Maximilien Burq, Ph.D.

■ publications | in linkedin | > burq.maximilien@gmail.com | +33.659.924.469

SUMMARY

Scientist and team lead, 8 years of experience working on novel algorithms and machine learning techniques in healthcare. Currently the technical lead for a team of 4 building wearable sensor-based digital biomarkers for neurological diseases.

WORK EXPERIENCE

Senior ML Data Scientist & Technical Lead – Verily – USA

Technical lead: digital biomarkers for neurological disorders.

- Managed the work of a team of 4, built a suite of sensor-based digital measures for Parkinson's disease: active tests (bradykinesia, tremor, gait) and passive monitoring of tremor and gait.
- Built state-of-the-art activity recognition models using self-supervised representation learning.
- Set the long term research roadmap, oversaw data collection across multiple observational clinical validation studies, led the publication efforts internally and with external partners.
- Responsible for delivery and analysis of results across multiple customers and clinical trials (\$mm deals).
- Led the technical work (model training, implementation, testing) for our FDA DDT-COA submission.

Machine Learning Data Scientist – Verily (f.k.a Google Life Sciences) – USA Nov 2018 - Dec 202

Built human activity recognition & step counting models. (TensorFlow, Scikit-learn)

- Led data collection effort, choice of corroborative devices and label adjudication procedures.
- Implemented framework for large-scale (terrabytes) preprocessing, training, serving of models. (Apache Beam, GCP). 30% decrease in step count error, 200% reduction in user complaints.

Researcher - MIT - USA

Dissertation on dynamic matching algorithms applied to kidney exchange programs.

- Designed novel algorithms for online optimization and online learning.
- Coursework in linear & mixed-integer optimization, online algorithms, bayesian learning, reinforcement learning, mechanism design.

Research Scientist Intern – Lyft – USA

Developed new marketplace optimization algorithms. Improved queueing models with online optimization.

EDUCATION

2014 - 2018	Ph.D. in Operations Research at MIT
2016	Visiting Student Researcher at Stanford University
2011 - 2014	Master's Degree in Applied Mathematics at École Polytechnique (France)
2009 - 2011	Classes Préparatoires in Mathematics, Physics and Informatics at Blaise Pascal (France)

SKILLS

Languages	English (bilingual), French (bilingual)
Domain knowledge	Digital Biomarkers, Movement disorders, Wearable sensors, Signal processing
Programming	Python (Google readability), SQL, Julia
Machine learning	TensorFlow, Keras, Jax, Xmanager, Scikit-learn
Data analysis	Pandas, Numpy, Apache Beam, Jupyter, Google Cloud Platform

2013 - 2018

Jan 2021 - present

2017

Selected Publications

- Burq, Maximilien, Genko Oyama, et al. (2023). "Analytical and Clinical Validity of Wearable, Multi-Sensor Technology for Assessment of Motor Function in Patients with Parkinson's Disease in Japan: an Observational Study. Working paper". In: preprint.
- Popham, Sara et al. (2023). "Validation study for an algorithm to classify real-world ambulatory status from a wearable device using multimodal and demographically diverse data". In: *preprint*.
- Burq, Maximilien, Erin Rainaldi, et al. (2022). "Virtual exam for Parkinson's disease enables frequent and reliable remote measurements of motor function". In: *npj Digital Medicine* 5.1, pp. 1–9.
- Poole, Sarah F et al. (2021). "A holistic approach for suppression of COVID-19 spread in workplaces and universities". In: *PloS one* 16.8, e0254798.
- Ashlagi, Itai, Maximilien Burq, Chinmoy Dutta, et al. (2019). "Edge weighted online windowed matching".In: Proceedings of the 2019 ACM Conference on Economics and Computation, pp. 729–742.
- Ashlagi, Itai, Maximilien Burq, Patrick Jaillet, et al. (2019). "On matching and thickness in heterogeneous dynamic markets". In: *Operations Research* 67.4, pp. 927–949.
- Burq, Maximilien (2019). "Dynamic matching algorithms". PhD thesis. Massachusetts Institute of Technology.

Ashlagi, Itai, Adam Bingaman, et al. (2018). "Effect of match-run frequencies on the number of transplants and waiting times in kidney exchange". In: *American Journal of Transplantation* 18.5, pp. 1177–1186.

Full list on Google Scholar

AWARDS

Major de Promotion, École Polytechnique	2011
Ranked 1st out of 10000 candidates on the nationwide entrance exam. Best project award, MIT	2014
30-day hospital Readmission Risk Prediction. (collaboration with Dell labs). Jean Gaillard Fellow	2015
Harvard - MIT international fellowship.	

MISCELLANEOUS

Nationality	French
Swiss work permit	В.
Current address	Neuchâtel, Switzerland (open to relocation)