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Abstract

We study marketplaces in which participants arrive over time, looking to interact with each
other. While such interactions have historically been decentralized, the past few years have
seen a dramatic increase in the number of internet-enabled platforms which facilitate the
process of connecting together, or matching, sets of two or more participants. We will focus
mainly on centralized matching markets such as kidney exchange and carpooling platforms.
In such platforms, the algorithm which determines whom to match and when to do so plays
an important role in the efficiency of the marketplace.

In the first part, we study the interface between the participant heterogeneity, the types
of matchings that are allowed, and the frequency at which the platform computes the alloca-
tions. We provide an empirical analysis of the effect of match frequency based on data from
major US Kidney exchange programs. We then study models that enable us to compare
the participants’ match rates and waiting times under varying matching policies. We show
both in theory and in practice that matching quickly can be beneficial, compared to policies
which try to increase opportunities for optimization through artificial waiting.

Until now, the theory of matching algorithms has focused mostly on static environments
and little is known in the case where all participants arrive and depart dynamically. In our
second part, we help bridge this gap by introducing a new theoretical problem for dynamic
matching when anyone can arrive online. We provide new algorithms with state-of-the-art
theoretical guarantees, both in the case of adversarial and random order inputs. Finally, we
show that these algorithms perform well on kidney exchange and carpooling data.
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1.1 Algorithms for dynamic matching

We study marketplaces in which participants arrive over time, looking to interact with each

other, and may leave if they are not able to find a suitable partner after some time. While

such interactions have historically been decentralized, the past few years have seen a dra-

matic increase in the number of internet-enabled platforms which facilitate the process of

connecting, or matching, sets of two or more participants. These platforms typically arise

whenever transactions cannot simply be performed using monetary transfers. Several reasons

may contribute to this:

- Cultural reasons: Dating for instance does not usually involve monetary transactions

between participants. Other examples can include finding an opponent in online games,

book exchanges, etc.

- Ethical or regulatory reasons: Typically, it is illegal in most countries around the

world to buy and sell kidneys1. Similarly, one cannot allocate affordable housing to

the highest bidder.

- Technical constraints: For example in ride-sharing or carpooling platforms, the speed

at which matches happen often requires specialized algorithms.

In this thesis, we will focus on the centralized setting where the final matching decision

is taken by the platform.2 The platform’s matching problem is made difficult by three key

characteristics: decisions have to be made dynamically, participants are heterogeneous, and

there is uncertainty regarding future arrivals and departures.

Dynamic Decisions: We are concerned with instances where participation in the platform

is highly dynamic: participants arrive and leave over time, and they may only be offered

matches while they are present. The platform thus needs to make decisions dynamically.

1To the best of our knowledge, only the Islamic Republic of Iran has a legal market for kidneys.
2In some other important cases, the planner is only able to offer suggestions to participants who ultimately

decide on whom to match. This creates a new set of challenges such as accounting for participant preferences
and strategic decisions.

20



Participant Heterogeneity: The value of matching two participants depends on both

parties’ characteristics and preferences. Furthermore, some participants may find it more

difficult than others to find a suitable match. They may be also be more at risk than others

of departing soon after arriving.

Future Uncertainty: The dynamic decisions are made difficult by a high degree of un-

certainty regarding future arrivals and departures. The goal is to tradeoff the benefits of

matching two participants now against waiting for a hypothetical better match option.

Several marketplaces face such a problem. Real time ride-hailing platforms have to decide

which driver to dispatch for a given passenger request. Such platforms may also offer the

option to carpool passengers and hence match passengers with each other, to be transported

in the same car. Kidney exchange platforms face the problem of matching patient-donor

pairs in a way that allows patients to receive a kidney transplant. The common challenge

in all these applications comes from the uncertainty associated with the value of waiting to

match later, as this depends on unknown future participant arrivals.

1.2 Motivation

Throughout this thesis, we will be concerned with the theory of dynamic matching algorithms

as well as the implications for real-world platforms that rely on these algorithms. In this

section, we outline a few of these platforms, with an emphasis on Kidney Exchange and

Carpooling.

1.2.1 Kidney exchange

Worldwide, over 2 million people received some form of renal replacement therapy in 2010,

and this likely represents only 10% of those who need it [38, 52]. An estimated 1 million die

annually from untreated kidney failure [91]. 3

3In the US, as of 2017, more than 740,000 people suffer from End Stage Renal Disease (ESRD), also
known as kidney failure [127], and more than 100,000 patients are on the waiting list for cadaver kidneys
[125].
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The preferred treatment for kidney failure is transplantation [123]. However there is an

acute shortage of kidneys for transplants4 and many live donors are incompatible with their

intended recipients.5 Kidney exchange allows such patient-donor pairs to swap donors so

that each patient can receive a kidney from a compatible donor. There have been recent

efforts to create large platforms to increase opportunities for these exchanges [93, 103].

Two or more incompatible pairs can form a cyclic exchange so that each patient can

receive a kidney from a compatible donor. In addition, a chain of exchanges can be initiated

by a non-directed donor (an altruistic donor who does not designate a particular intended

patient).6 Because monetary transfers are not allowed, it is also impossible to enforce con-

tracts that may arise in kidney exchange. Therefore transplants that occur as a result of an

exchange need to be conducted simultaneously in order to avoid the situation where a donor

decides not to proceed with the donation after her intended patient has received a kidney.7

Logistical constraints in turn limit possible exchanges to cycles involving at most 3-4, which

correspond to 6-8 simultaneous surgeries [103, 104, 105]. Chains, on the other hand, can be

done non-simultaneously, as a participant’s decision not to donate to the next pair in the

chain does not make said pair worse off, and therefore do not need to be bounded in length

[100, 106].

1.2.2 Carpooling

Traffic congestion is a severe problem in metropolitan areas around the world. A resident in

Los Angeles is estimated to lose around $6,000 per year due to spending extra hours in traffic

(Economist 2014). This does not account for extra carbon emissions. Two possible ways to

relieve congestion are pricing [129] and carpooling; online platforms and other technological

4In the US, as of 2017, the average waiting time to receive a kidney from a deceased donor is 3 to 5 years.
Every year, roughly 35,000 people are added to the waiting list, while only 16,000 receive a kidney.

5For a transplant to take place, the donor and intended recipient need to be both blood-type and tissue-
type compatible (i.e. the patient has no antibodies to the donor’s antigenes).

6See [119] for a detailed description of kidney exchange.
7To avoid confusion, we will use the pronouns she, her instead of the plural they, their whenever referring

to a person of undetermined gender.
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advances are now available to assist with these tasks [94].8

Online platforms now offer the option to share rides. An immediate benefit is that

passengers who share rides pay a lower price for the trip. However, the passenger may

also experience a disutility from additional waiting, detours, and less privacy. Facing these

tradeoffs, ride-sharing platforms and carpooling applications seek to increase the volume

of ride-sharing, which will in turn help in reducing congestion. This requires sophisticated

methods that perform the real-time match decision in addition to other routing and pricing

problems.

1.2.3 Centralized matching

While most of the models and numerical experiments in this thesis will relate to either kidney

exchange or carpooling, some of the insights and algorithms developed here may also apply

in some other settings.

The problem of dynamically scheduling jobs that arrive sequentially on a finite number of

resources has numerous applications, ranging from physical to computational tasks (internet

routers, cloud computing). Similarly, the problem of allocating internet advertisements while

a webpage is being loaded can be viewed as a highly dynamic matching problem. Finally,

platforms that offer online games often need to match participants to their opponents and

teammates. This requires trading off the quality of the match (i.e. matching opponents of

similar levels, or teams with complementary skills) with a low waiting time.

1.2.4 Decentralized matching

There are many other instances where the platform may only offer suggestions or recom-

mendations to the users, and the matching decision is conducted in a decentralized manner.

This often happens in the form of a recommendation system or a search algorithm. A few

examples include: e-retail, on demand video services, car or house sharing platforms, barter

8Ostrovsky and Schwarz [94] discuss the complementarities between autonomous vehicles, carpooling and
pricing.
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exchange platforms, affordable housing allocation, cadaver organ allocation as well as a few

decentralized carpooling platforms.

While this decentralized setting is not the focus of this thesis, we hope that some of the

insights which we obtain in the centralized setting will be applicable there as well.

1.3 Mathematical framework

In this section we present a mathematical framework that encapsulates all the dynamic

matching problems we will study. This enables us to abstract away key aspects of the

dynamic matching problem from some of the platform specificities.

1.3.1 General framework

Compatibility Graph. We model the participants in the marketplace as vertices in a

compatibility graph 𝐺. Depending on the application, 𝐺 may be a directed or undirected

graph.9 Each vertex 𝑖 ∈ 𝒱 arrives over time and is associated with an arrival time 𝑡𝑖 and a

departure time 𝑑𝑖. Vertices reveal the edges that they are adjacent to upon arrival.10 We

denote ℰ ⊂ 𝒱2 the set of edges in 𝐺. For each pair 𝑖, 𝑗 ∈ ℰ , we denote the edge from 𝑖 to 𝑗

by (𝑖, 𝑗), and associate the value 𝑣𝑖,𝑗.11

The compatibility graphs allowed will differ depending on the model. In Part I, we focus

on graphs that are unweighted: 𝑣𝑖,𝑗 ∈ {0, 1}, whereas in Part II, any non-negative edge

weight is allowed. The choice of how graphs are generated will also vary: in Chapters 3 and

8 we will use real-world datasets to generate the compatibility graphs. In Chapters 4 and 5,

we will assume a stochastic Erdős-Renyi model for 𝐺. In Chapters 6, and 7 we will design

algorithms that perform well over any graph 𝐺.12

9Without loss of generality, one could assume that the graph is always directed, and sometimes add the
additional constraint that each forward arc 𝑖→ 𝑗 comes with the associated backward arc 𝑗 → 𝑖.

10Throughout this thesis, the word edge will be used both in the case of a directed or undirected graph.
It will be clear from the context which one is being used.

11When 𝐺 is undirected, our convention will be that 𝑣𝑖,𝑗 = 𝑣𝑗,𝑖.
12This is sometimes called the adversarial setting, as the algorithm needs to perform well even when the

input graph is chosen in the worst possible way.
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Allowed Matchings. A matching rule 𝑅 determines whether a set of edges 𝑚 ⊂ ℰ con-

stitutes a matching. In practice, different types of platforms will allow different kinds of

matchings. For example, if we wish to match kidney patient-donor pairs, a matching can be

a directed cycle of length less than 4. If we wish to match passengers to drivers, a matching

can be an edge from a driver to a passenger that satisfies some geographic constraints.

In Part I, we focus on a directed compatibility graph 𝐺. The matching rule will be

to accept short cycles and/or chains. Cycles have to have a length of at most 3 of the

form: {(𝑖, 𝑗), (𝑗, 𝑖)}, or {(𝑖, 𝑗), (𝑗, 𝑘), (𝑘, 𝑖)}. Chains can be of arbitrary lengths, of the form

{(𝑖0, 𝑖1), (𝑖1, 𝑖2), ..., (𝑖𝑙, 𝑖𝑙+1)} where 𝑙 is the length of the chain and 𝑖0 is constrained to belong

to a subset of bridge vertices.

In Part II, we will focus on an undirected compatibility graph. The matching rule will

be to accept any single edge {(𝑖, 𝑗)}. Note that the switch to an undirected graph is mainly

for the ease of exposition, we could just as well consider a directed graph with a matching

rule that accepts cycles of length two {(𝑖, 𝑗), (𝑗, 𝑖)}.

We will say that a vertex is in a matching 𝑠 if it is adjacent to at least one edge in 𝑠. A

valid allocation is a set of valid matchings 𝑎 = {𝑚1, ...,𝑚𝑘} where no vertex is included in

more than one matching 𝑚𝑖. In other words, it is not possible to include a single vertex in

more than one cycle or chain. We will say that a vertex is in an allocation if it is in one of

its matchings.

The value of a matching 𝑚 is the sum of the values of its edges: 𝑣(𝑚) =
∑︀

𝑒∈𝑚 𝑣𝑒. The

value of an allocation 𝑎 is the sum of the values of its matchings: 𝑣(𝑎) =
∑︀

𝑚∈𝑎 𝑣(𝑚).

Time and Departure Model. We will model time to be either discrete or continuous

depending on the model, see section 1.4 for a more in-depth discussion. At any time 𝑡, the

platform can decide to match an allocation 𝑎. In that case, we remove all the vertices of 𝑎

from 𝐺, and the platform collects 𝑣(𝑎). If a vertex 𝑖 is not matched by time 𝑑𝑖, it departs

unmatched: 𝑖 is removed from 𝐺 and no value is collected by the platform.13

13In the case of carpooling, this may be because the participant decided to use another mode of trans-
portation, in the case of kidney exchange, this is often because the patient found a kidney through some
other means, or became too sick to safely undergo surgery.
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Objective Functions. Depending on the setting, we will assume two different kinds of

objectives: the platform may either seek to minimize the expected waiting time of vertices

in the graph (this is the case in chapter 5), or to maximize the sum of total value of matchings

collected (chapter 4, 6, 7, 8), or a combination of both at the same time (chapter 3)

There are two key difficulties for the platform’s decision. First is to decide when to search

for allocations, and this will be the topic of chapters 3 and 4. Second is to decide which

vertices to include in the allocation, and which ones to keep waiting in the hope of a better

match in the future. This will be the topic of chapters 6 and 7. In some instances, the

platform is also able to influence the choice of the matching rule 𝑅, as well as the nature of

the graph 𝐺. In chapter 5, we study how these parameters impact the performance of the

platform.

In Table 1.1 we provide a concise summary of the models studied, and how they each fit

in our mathematical framework.

Chapter 3 4 5 6 7 8

Graph type

adversarial x
random order x
stochastic x x x
data-driven x x

Edge weights R+ x x x
{0, 1} x x x

Matching rule:
2-cycles x x x x x x
3-cycles x x
chains x x

Time model: discrete x x x x x
continuous x

Departure process deterministic x x
stochastic x x x x

Objective function: minimize waiting x x
maximize value x x x x x

Table 1.1: Summary of model characteristics for each chapter.
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1.3.2 Notations

Throughout this thesis, in order to be consistent with a number of different streams of

literature, we will use the terms participant, agent, node and vertex interchangeably to

denote a person to be matched. In some settings that relate to kidney exchange, we will also

use patient-donor pair or simply pair to denote a single vertex in our compatibility graph.

Similarly, we will use the terms market, pool and compatibility graph to denote the en-

semble of participants who wish to be matched.

Competitive ratios

We define an instance 𝐼 of a dynamic matching problem as a collection of a matching rule

𝑅, a compatibility graph 𝐺(𝒱 , ℰ), and sets of arrival and departure times (𝑡𝑖, 𝑑𝑖)𝑖∈𝒱 . See

section 1.3 for more details.

For any instance 𝐼 and matching algorithm 𝒜, we will denote 𝒜(𝐼) to be the value

collected on that instance. We will denote by 𝒪 the offline algorithm which has information

on the whole graph 𝐺 and the arrival and departure sequence.

In Part II, we will measure the performance of our algorithms using the competitive ratio.

Definition 1 (Competitive Ratio). Fix a class ℐ of instances. A (possibly randomized)

algorithm 𝒜 is 𝛼-competitive in ℐ if and only if for all instances 𝐼 ∈ ℐ, E [𝒜(𝐼)] ≥ 𝛼𝒪(𝐼).

In Chapter 6, we set ℐ to contain all graphs 𝐺 with 𝑛 vertices, and the additional

constraint that there exists a time 𝑑 such that for all 𝑖 ∈ 𝒱 , 𝑑𝑖 = 𝑡𝑖 + 𝑑. In Chapters 7 and

8, we relax Definition 1 to be in expectation over classes of instances:

Definition 2 (Stochastic Competitive Ratio). Fix a set 𝒟 of distributions 𝐷 over instances

𝐼. A (possibly randomized) algorithm 𝒜 is 𝛼-competitive in 𝒟 if and only if for all distribu-

tions 𝐷 ∈ 𝒟, E𝐷 [𝒜(𝐼)] ≥ 𝛼E𝐷 [𝒪(𝐼)].

In Chapter 7, for each graph 𝐺 with 𝑛 vertices, we define a distribution over instances

as follows: select uniformly at random a permutation 𝜎 ∈ 𝑆𝑛 over 𝑛 vertices. Fix an integer

𝑑 and for each vertex 𝑖, set 𝑡𝑖 = 𝜎(𝑖) and 𝑑𝑖 = 𝜎(𝑖) + 𝑑. Thus for each graph 𝐺, we have a
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uniform distribution 𝐷 over 𝑛! instances. We set 𝒟 to be the set of all such distributions for

any 𝐺.

In Chapter 6, we first define a type graph 𝑇 . For each vertex 𝑥 in 𝑇 , we define an arrival

rate 𝜆𝑥 and a departure rate 𝜃𝑥. We denote 𝜆,𝜃 the corresponding vectors. We then generate

arrivals 𝑖 through a Poisson(𝜆𝑥) process, and departures through an Exponential(𝜃𝑥) process.

This generates a distribution 𝐷 for each type graph 𝑇 and vectors 𝜆, 𝜃. We set 𝒟 to be the

set of all such distributions.

1.4 Outline

This thesis consists of nine chapters, grouped in two main parts. Chapter 2 presents a brief

literature review and outlines the main contributions of this work. In Part I, which consists

of Chapters 3, 4 and 5, we study the interface between the types of matchings that are

allowed 14, the composition of the market and the frequency at which one should search for

allocations. In Part II, which consists of Chapters 6, 7 and 8, we focus on the setting where

2-cycles only are allowed and introduce algorithms that perform well over a wide range of

possible graphs. Next we give a brief outline of each chapter.

Chapter 2: Literature Review and Main Contributions

This chapter presents existing work and models in the space of dynamic matching. We also

outline the key contributions of this thesis. From a theoretical perspective, we contribute

new problems and algorithms to the rich Online Matching literature. From a practical

standpoint, we contribute new insights and algorithms to the medical literature on Kidney

Exchange as well as the transportation literature on Carpooling.

14This is motivated by Kidney Exchange, where an important policy decision is the length of cycles to
allow, as well as whether to use chains.
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Part I: Interface between Matching Technology, Market Heterogene-

ity and Match Frequency

Chapter 3: The Effect of Match Run Frequency on the Number of

Transplants and Waiting Times in Kidney Exchange

This Chapter is based on the paper Ashlagi et al. [17], which is joint work with Itai Ash-

lagi, Adam Bingaman, Vahideh Manshadi, David Gamarnik, Cathi Murphey, Alvin E. Roth,

Marc L. Melcher, and Michael A. Rees, and is published in the American Journal of Trans-

plantation.

In Kidney Exchange programs the frequency of match runs, i.e. the choice of how often

the platform searches for matches, may have important consequences for patients in need of

a transplant. On one hand, infrequent match runs may lead to fewer sub-optimal matching

decisions, and thus more transplants. On the other hand, frequent match runs decrease

waiting times, and reduce the likelihood that a patient leaves the program without a trans-

plant.15 We conducted simulations using clinical data from two Kidney Exchange programs

in the US to study how the frequency of match-runs impacts the number of transplants and

the average waiting times. In this model, valid matchings can be directed cycles of varying

length (2, 3, or 4), as well as directed chains initiated by a special type of vertices called

non-directed donors.

We simulate the options facing each of the two registries by repeated resampling from

their historical pools of patient-donor pairs and non-directed donors, with arrival and de-

parture rates corresponding to the historical data. We find that longer intervals between

match-runs do not increase the total number of transplants, and that prioritizing highly sen-

sitized patients is more effective than waiting longer between match-runs for transplanting

highly sensitized patients. While we do not find that frequent match-runs result in fewer

transplanted pairs, we do find that an increase in arrival rates of new pairs improves both

the fraction of transplanted pairs and waiting times.

15This can be for instance because the patient became too sick to undergo surgery.
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Chapter 4, Cycle Length, Priority Schemes and Matching Frequency.

This chapter is based on the unpublished manuscript Ashlagi et al. [15], which is joint work

with Itai Ashlagi, Patrick Jaillet and Vahideh Manshadi.

In this chapter we leverage insights from Chapter 3, as well as statistics derived from

a new dataset to create a theoretical model of Kidney Exchange that accounts for both

patient-donor heterogeneity and the difficulty that some patients have in finding a suitable

donor before they need to depart. Importantly, we make sure that our model still remains

tractable analytically.

Using this model as well as some new simulation results, we study how both the priority

structure, and the length of cycles that are allowed impact the choice of the optimal match

frequency. We find that the benefits of small batches have negligible effect on the number of

pairs whose donors are compatible with hard-to-match patients. In other words, the in-degree

of pairs with hard-to-match patients stays small in the compatibility graph.16 Subsequently,

when only cycles of length 2 are allowed, waiting does not result in a significant number of

additional matches. Surprisingly, we find a different result when cycles of length up to 3 are

allowed. Although the degree of hard-to-match pairs is still small, it is not always zero. In

some cases, they are compatible to receive from another pair but are not able to give back,

precluding a 2-cycle. In that case, waiting for a third pair to arrive may increase the odds

of closing the loop.

This suggests that in some circumstances, some amount of targeted waiting may be

beneficial, even when making everyone wait is counter-productive.

Chapter 5, On Matching and Thickness in Heterogeneous Dynamic

Markets.

This chapter is based on [18], under revision in Operations Research, which is joint work

with Itai Ashlagi, Patrick Jaillet and Vahideh Manshadi.

16Recall from section 1.2.1 that in Kidney Exchange, patient-donor pairs join the program together, and
are treated as a unit
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In this chapter, we abstract away from the specifics of Kidney Exchange and study

dynamic matching in a model with no departures. While all agents are potentially compatible

with each other, some are hard-to-match and others are easy-to-match. Agents prefer to be

matched as soon as possible and matches are formed either bilaterally or indirectly through

chains. We adopt an asymptotic approach and compute tight bounds on the limit of waiting

time of agents under myopic policies that differ in matching technology and prioritization.

We find that the market composition is a key factor in the desired matching technology

and prioritization level. When hard-to-match agents arrive less frequently than easy-to-

match ones (i) bilateral matching is almost as efficient as chains, and (ii) assigning priorities

to hard-to-match agents improves their waiting times. When hard-to-match agents arrive

more frequently, chains are much more efficient than bilateral matching and prioritization

has no impact.

We further study the effect of arrival rates on the average waiting time. Somewhat sur-

prisingly, we find that in a heterogeneous market, under bilateral matching, an increase in

the arrival rate of hard-to-match agents has a non-monotone effect on waiting times. This

is because, under some market compositions, there is an adverse effect of competition. Our

comparative statics shed light on the impact of merging markets and attracting altruistic

agents (that initiate chains) or easy-to-match agents. This work uncovers fundamental dif-

ferences between heterogeneous and homogeneous dynamic markets, and potentially helps

policy makers to generate insights on the operations of matching markets such as kidney

exchange programs.

Part II: Beyond Myopic Policies: Algorithms for Stochastic and

Worst Case Graphs

In the next three chapters, we impose fewer constraints on the underlying compatibility

graph. We study algorithms that perform well over a wide class of graphs, when matches

are constrained to be between two participants only.
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Chapter 6, Maximizing Efficiency in Dynamic Matching Markets.

This chapter is based on the manuscript Ashlagi et al. [20], which is joint work with Itai

Ashlagi, Patrick Jaillet, Amin Saberi . It was later merged into [19], with Chinmoy Dutta

and Chris Sholley and submited to the Symposium on Discrete Algorithms.

In this chapter, we consider matching in the classical graph-theoretic sense: the compati-

bility graph is undirected and two vertices can be matched if and only if there exists an edge

between them. We study the problem of matching agents who arrive at a marketplace over

time and leave after 𝑑 time periods. The planner’s goal is to maximize the total value over

a finite time horizon. We study matching algorithms that perform well over any sequence of

arrivals when there is no a priori information about the match values or arrival times.

Our main contribution is a 0.25-competitive algorithm17. The algorithm randomly selects

a subset of agents who will wait until right before their departure to get matched, and

maintains a maximum-weight matching with respect to the other agents. The primal-dual

analysis of the algorithm hinges on a careful comparison between the initial dual value

associated with an agent when it first arrives, and the final value after d time steps.

We also show that no algorithm is more than 0.5-competitive. We extend the model to

the case in which departure times are drawn independently from an exponential distribution,

and establish a 0.125-competitive algorithm in this setting.

Finally, we introduce a new algorithm based on the idea of Re-Optimization. We show

how many of the ideas from the proof of our main result can be adapted to this new algorithm.

Although we are not able to formally provide a competitive ratio above 0.25, we give insights

as to why it might be possible to do so.

Chapter 7, Online Matching with Deadlines in Random Order.

This chapter is joint work with Itai Ashlagi and Amin Saberi. It was merged into [19] and

submitted to the Symposium on Discrete Algorithms.

17This means that for any graph 𝐺 and for any sequence of arrivals, our algorithm collects at least 0.25 of
the value that is collected by the offline algorithm which knows the future.
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The theoretical setting for this chapter is similar to that of Chapter 6. Here we also

assume that vertices depart after a fixed deadline of 𝑑 time steps after their arrival. We

further assume that the vertices arrive in random order. Our main result is to show that

the batching algorithm, which periodically searches for the highest-value allocation, is 0.279-

competitive. Our proof first reduces the problem to a special graph covering problem. We

then show that an lower bound on the competitive ratio of Batching can be computed as the

limit of a sequence of Linear Programs. Finally, we prove that it is sufficient to explicitely

solve a small number of these LPs, and we provide a computer-aided argument to conclude.

We also extend our proof framework to the setting where the online algorithm is allowed

to know which vertices are going to arrive 𝑙 steps ahead of time. We provide a closed-form

competitive ratio that depends on the ratio of 𝑙/𝑑. In particular we show that if 𝑙 ≥ 𝑑, then

the batching algorithm performs better than any online algorithm that does not have access

to the look-ahead information.

We conjecture that Batching is in fact 1/2-competitive, and we provide a proof sketch

as well as some numerical insights and intuition. Finally, we provide numerical simulation

results based on datasets of New York City’s taxis and the National Kidney Registry. Our

simulations compare Batching to the Re-Optimization algorithm introduced in Chapter 6.

Chapter 8: A Dynamic Matching Framework with Stochastic Infor-

mation.

In this chapter we consider the setting where the compatibility graph is sampled from a

distribution which is known to the matching algorithm. We formalize this using a type

graph, from which incoming vertices are sampled.

In the first part, we introduce a Suggested Matching algorithm inspired by results on the

classical online matching problem. We prove that SM is constant-competitive algorithms for

a few relevant special cases of the problem, and provide a competitive ratio which depends

on the ratio of arrival to departure rates in the general case.

In the second part, we frame the problem through the lens of dynamic programming. We
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first show how ideas from approximate dynamic programming can be leveraged to provide

useful algorithms. Finally, we show how we can generalize to real-world cases where the

number of types grows large or even infinite.
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Chapter 2

Main Contributions and Literature

Overview
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This thesis builds on previous work from many fields, such as Computer Science, Eco-

nomics, Transportation Science, Queueing Theory, etc. The goal of this chapter is not to

provide an extensive review, but we will summarize a few results that are relevant to our

work, and highlight our contributions.

First, there is a large body of literature on Matching Algorithms, both Static (2.1.1)

and Online (2.1.2). Also relevant is the large literature on Queueing (2.1.4) and on Job

Scheduling (2.1.3). Finally we will present some of the recent advances in the literature on

two applications: Kidney Exchange (2.3) and Carpooling (2.4).

2.1 Matching

2.1.1 Offline matching

A large literature has been dedicated to the static - offline - matching problem with het-

erogeneous match values. A particular problem is finding a maximum-weight matching

problem efficiently. Classic algorithms that have been proposed include the Hungarian [74],

Edmond’s [51] and auction algorithms [26, 41]. For the case, in which agents have ordinal

preferences, Gale and Shapley [60] proposed the Deferred Acceptance algorithm which finds

a stable matching. Our work in Chapter 6 builds on these algorithms by maintaining a

tentative maximum-weight matching over time, and matches are made final when a seller is

about to depart. For reviews of the literature on static matching markets, with participant

preferences, see [108, 120].

2.1.2 Online matching

The problem of online matching arises naturally in information technology applications

such as online advertising in which advertisements need to be assigned instantly to queries

searched or webpages viewed by users. The study of online matching was initiated by Karp

et al. [72], in which they analyze the problem in adversarial settings with no probabilistic

information about the graph. Follow up work has provided new tools for the analysis of
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this online matching problem in the adversarial setting [29, 42]. Several follow up papers,

studied the problem beyond the worst case settings. Goel and Mehta [61] study the model

in which the underlying graph has unknown distribution. Feldman et al. [54] notice that in

applications such as online advertising there is information about the graph structure, and

they analyze a model where the graph distribution belongs to a certain class. Jaillet and Lu

[67], Manshadi et al. [81] study the same problem with a general known distribution. This

work has numerous other extensions, for example to stochastic arrivals and in the adwords

context [83]. See [82] for a detailed survey.

Several papers consider the problem of dynamic matching in the edge-weighted case.

Feldman et al. [55] find that in the classic online bipartite setting, no algorithm achieves a

constant approximation. They introduce a free disposal assumption, which allows the online

algorithm to discard a matched vertex in favor of a new arriving vertex. They find, based

on an algorithm by Lehmann et al. [75], that a greedy algorithm that matches a vertex to

the highest marginal vertex, is 0.5-competitive. We build on this result for a special classes

of bipartite graphs. Zadimoghaddam [132] provides a new analysis with better bounds.

This model has also been extended to incorporate participant choice models [79]. In the

adversarial setting Ashlagi et al. [16], Emek et al. [53] study the problem of minimizing the

sum of distances between matched vertices and the sum of their waiting times. In their model

no vertex leaves unmatched and our model does not account for vertices’ waiting times. This

work is also related to the literature on allocation of re-usable products [47, 110],

Closely related to our model in Chapter 6 is work that was conducted concurrently by

Huang et al. [66], which studies a model similar to the one introduced in Chapter 6, but in

the case of a graph with {0, 1} edges. This allows them to have departure times that are

chosen adversarially, as opposed to our deadline model.

This thesis contributes to this literature in two ways. First, we introduce two new models

in Chapters 6 and 7, which enable the study of a new class of problems where the compat-

ibility graph 𝐺 is not bipartite, and all vertices arrive online. This is particularly relevant

to applications such as Kidney Exchange and Carpooling. This work also highlights the im-
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portance of studying the departure process, in addition to the arrival structure. Second, we

provide state-of-the art algorithms that perform well on edge-weighted graphs even without

a free disposal assumption. We also show that in addition to good performance guarantees

in the worst case, some of these algorithms perform well on real datasets.

2.1.3 Job scheduling

Related to our work are some papers on job or packet scheduling. Jobs arrive online to a

buffer, and reveal upon arrival the deadline by which they need to be scheduled. The algo-

rithm can schedule at most one job per time and the value of scheduling a job is independent

from the time slot. Chin et al. [36] and Hajek [63] provide constant competitive algorithms.

Jeż et al. [68], Li et al. [77] study a special case where the packets have agreeable deadlines,

i.e. they depart in order of arrival. Bar-Noy et al. [25] study a generalization where jobs may

take multiple units of time to be completed, and consume fractional amounts of resources.

Our results in Chapters 6 and 7 relate to this literature in three ways. First, the problem

of job scheduling can be seen as a special case of our dynamic matching problem, where time

slots and jobs arrive online. Our focus on edge-weighted graphs makes the problem more

difficult, as it would correspond to jobs yielding different values depending on the time they

are scheduled at. Second, our model of deadlines where each vertex stays in the pool for the

same number of time steps can be seen as a case of agreeable deadline. Finally, our heuristic

𝛼-DDA algorithm in Chapter 6 builds on the idea of Jeż et al. [68] of giving a multiplicative

“bonus” to vertices that are about to expire.

2.1.4 Matching queues

Our model in Chapter 8 is related to the problem of matching multi-class customers to

multi-class servers, studied in queueing literature. For example, Caldentey et al. [34] as well

as Adan and Weiss [1] study the assymptotic match rates under the First-come-first-serve

policy. Further work has focused on compatibility-based optimal control problems where

vertices do not leave the system unless they are matched. Objectives that have been studied
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include minimizing waiting costs [33, 62] or maximizing matching rewards [92].

Our work in Chapter 8 introduces a similar optimal control problem where waiting ver-

tices are at risk of departing unmatched.

2.2 Mechanism and market design

A large stream of literature in mechanism design focuses studies matching in decentralized

settings where agents’ preferences are richer and may lead to strategic behaviour. Important

concepts from the “static” matching literature, such as stability, can be adapted to a dynamic

setting [50, 70]. In such settings with rich preferences, Baccara et al. [22], Fershtman and

Pavan [58] find that policies that match without waiting can be inefficient, since some waiting

can improve the quality of matches. Our work contributes to this literature through a better

understanding of the settings where waiting may be useful in centralized settings.

Mendelson [86] analyzed the behavior of a clearinghouse in a dynamic market with prices

in which sellers and buyers arrive over time according to a given stochastic process. Similar

to our model in Chapters 4 and 7, he considers a mechanism in which the clearing prices are

computed periodically, and he studies the market behavior for different time (period) scales.

Arnosti and Shi [11], Bloch and Cantala [30], Kaplan [71], Leshno [76] study matching

mechanisms in the context of affordable housing allocation. They analyze which lottery and

wait-list mechanisms lead to efficient allocations. Agarwal et al. [2], Schummer [115], Su and

Zenios [122] study similar questions in the context of cadaver organ allocation mechanisms.

Our work differs from this literature mainly by the fact that preferences are assumed to

be known to the centralized planner, and we suppose that agents are truthful when revealing

these preferences independently from the allocation mechanism.

2.3 Kidney exchange.

Kidney Exchange was initially suggested by Rapaport [99]. Subsequent studies have looked

at a variety of questions. Particularly relevant to this thesis, are papers which study the
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effect of waiting and frequent matching. Also relevant are work which study the role of

longer cycles and chains on overall efficiency.

2.3.1 Waiting and match frequency.

Kidney exchange programs periodically perform run optimization algorithms to find cyclic

exchanges among incompatible pairs, and chains initiated by a non-directed donor. In-

tuitively, an important factor that impacts the number of transplants is the timing and

frequency at which these match runs are conducted.

A number of stylized models have been proposed over time, and have largely suggested

that matching frequently is optimal.1 Ünver [126] initiated the study of dynamic kidney

exchange. Studying a model with different types and a deterministic compatibility structure

across types, he finds that matching upon arrival is near optimal, even though some waiting

with certain types to facilitate three-way exchanges adds some benefits. Anderson et al. [8]

consider a homogeneous model without departures and find that there is little benefit from

waiting before matching under either short cycles and chains.2 Akbarpour et al. [4] consider

a homogeneous model with departures and find that the optimality gap of the policy that

matches without waiting remains constant as the match probability decreases.

We contribute to this literature in two ways. In Chapter 3, through data-driven simu-

lations which study the impact of match-run frequency, and show that among polices that

match periodically (e.g., every week or every day), high matching frequencies perform best.

In Chapter 4, we study a model similar to Anderson et al. [8], and show that making a select

subset of vertices wait may perform well.

Chapter 5 builds on these findings, and only analyzes myopic policies that search for a

match upon each arrival of a new agent.

Overall, as the literature on dynamic matching is developing, a clearer picture is emerging

on the impact of waiting. In completely homogenous settings with no knowledge of departure
1Non-myopic policies have also been studied, for example Dickerson et al. [44] study forward-looking

polices by casting the dynamic matching problem as a high-dimensional dynamic program, and develop a
heuristic to overcome the curse of dimensionality.

2The waiting-time scales with the same factor with or without waiting before matching.
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times, waiting is ineffective Akbarpour et al. [4], Anderson et al. [9]. However, in models

where heterogeneity in compatibility and/or preferences are incorporated, and more general

forms of matching is allowed (e.g., 3-way cycles in addition to 2-ways) some positive impacts

of waiting can become apparent (See also Section 2.2).

2.3.2 Cycle length and never ending chains.

Roth et al. [103] first proposed a way to organize kidney exchange integrating cycles and

chains. Logistical constraints required that cycles involve no more than two patient-donor

pairs. Subsequent work suggested that a modest expand of infrastructure, that is allowing

only slightly larger, 3-and 4-way exchanges would be efficient (Roth et al. [107], Ashlagi and

Roth [12]) in large static pools. These studies assume either implicitly or explicitly that no

tissue-type incompatibilities exist.

Awasthi and Sandholm [21] use online stochastic optimization methods to computation-

ally study the allocation in kidney exchange using short cycles in a dynamic setting. Dicker-

son et al. [43] conduct computational simulations in the dynamic settings to understand the

benefit of chains. Dickerson et al. [44] study dynamic optimization and propose an algorithm

that assigns weights to different matches using future stochastic sampling. These studies use

however dense compatibility graphs (they generate graphs according to Saidman et al. [111]

which have been shown in Ashlagi et al. [14] to be very dense as opposed to clinical data).

Further, [49] use a novel random walk approach to study the effectiveness of chains in a

static random graph with hard and easy-to-match agents.

In a related line of work, Zenios [133] studied a dynamic kidney allocation model where

both direct (2-way) and indirect kidney exchange are allowed. 3 The objective is to study

the tradeoff between the (lower) quality of a deceased donor (that is assumed to be available

immediately) and the cost of waiting for a direct exchange. The exchange model studied in

this work ignores the tissue-type compatibility.

Anderson et al. [8] consider a homogeneous model without departures and find that
3In an indirect exchange, the donor gives a kidney to the highest priority patient in deceased donor

waiting list, and her intended patient gets the highest priority in the waiting list.
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when the graph is very sparse, allowing longer cycles result in significantly less waiting than

restricting to cycles of length two. They find that allowing chains further reduces the waiting

time significantly.

Our contributions to this literature are two-fold. First, Chapter 4 highlights how longer

cycles may increase the benefit from non-myopic policies. Second, Chapter 5 help quantify

the value of chains. In particular we show that the pool composition impacts the performance

of short cycles in a significant way.

2.3.3 Failures.

Another line of work in kidney exchange studies matching in the presence of failure. Many

of the match offers given by the exchange programs fail to proceed to actual transplant for

various logistical and medical reasons. A few recent papers study kidney exchange with

failures, [31, 48, 88]. They use a probabilistic model for failure and assume that each com-

patible match is only viable with a given probability. They design algorithms to maximize

the expected number of successful matches in static settings. Further, [48] computationally

study this problem in a dynamic setting using dense graph models.

2.3.4 Heterogeneity and pool composition.

Finally, some work has focused on the effects of the market size and composition on efficiency.

For instance, merging markets is often sought as a solution to improve efficiency (see e.g.

[32, 118]). It has also been reported that kidney exchange programs attempt to attract

easy-to-match pairs [12].

Our heterogeneous model in Chapters 4 and 6 contribute to this literature by highlighting

some of the tradeoffs that occur, and how they relate to the types of matching that are

allowed.
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2.4 Ride sharing and carpooling

There is a rich history of using optimization algorithms in the transportation sector. Re-

cently, there has been a surge of interest in models related to ride-sharing. Santi et al. [113]

finds that about 80% of rides in Manhattan could be shared by two passengers. Recently,

Ostrovsky and Schwarz [94] discuss the complementarities between autonomous vehicles,

carpooling and pricing. Many studies focus on problems related to dynamic pricing [35],

routing [27, 130], scheduling [37, 130], rebalancing vehicles [23, 24, 97, 121, 134], dispatching

drivers [27, 47, 65, 95], or matching ride-sharing passengers [6, 73, 113]. See [3] for a survey.

Some papers provide detailed numerical simulations and heuristic algorithms. Vazifeh

et al. [128] study the Minimum Fleet Problem, while Schilde et al. [114] provide heuristics

for the dispatch and scheduling “dial a ride” problem.

Our contribution to this literature is two-fold. First, our findings in Chapter 6 provide

a theoretical grounding to the popular re-optimization heuristic sometimes called rolling-

horizon. Second, our simple dynamic matching framework can easily be constrained to

incorporate only realistic match values in the context of ride-sharing. This could be used

to study more in depth the value of waiting and optimization for different kinds of dynamic

allocation problems.
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Part I

Interface between Matching Technology,

Market Heterogeneity and Match

Frequency
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Chapter 3

The Effect of Match Run Frequency on

the Number of Transplants and Waiting

Times in Kidney Exchange
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3.1 Introduction

Kidney exchange, also called kidney paired donation (KPD), enables candidates with in-

compatible living donors to obtain transplants from other living donors, such as nondirected

donors (NDDs) or donors belonging to other incompatible pairs [28, 39, 64, 85, 89, 90, 96,

99, 101, 109, 112, 116].1 KPD programs perform match-runs that use optimization to find

cyclic exchanges among incompatible pairs, and chains initiated by a NDD. Intuitively, an

important factor that impacts the number of transplants is the size of the pool, which may

be affected by the length of time between match-runs.

While the timing for deceased organ allocation is determined by the availability of organs,

the timing of match-runs in KPD is more flexible. Longer intervals between match-runs

allow for the accumulation of more pairs in the pool and may allow more potential matches.

However, we will see that there is an important difference between pool size and composition.

A larger pool of patient-donor pairs who have not previously failed to match provides many

more matches than an equally large pool that includes many pairs for whom no matches were

accomplished in previous match-runs, and this will reduce the benefits of delaying match-runs

in mature pools that contain many hard-to-match pairs. Furthermore, infrequent match-runs

may also slow down the complex process of identifying matches and carrying out transplants.

This problem is amplified by the large fraction of proposed virtual matches that fail because

of immunological, logistical, and other reasons [59, 64].Furthermore, additional time on the

waiting list is undesirable for candidates [84].

National KPD programs in the United Kingdom, The Netherlands, Australia, and Canada

conduct infrequent match-runs. In the United Kingdom, The Netherlands, and Australia, a

match-run is conducted every 3 months and in Canada every 4 months [40, 56, 57, 69, 80].

15-19 In the United States, KPD programs typically match very frequently: multicenter

programs such as the Alliance for Paired Donation (APD) and National Kidney Registry

match daily, United Network for Organ Sharing finds matches weekly, and also single-center

programs such as Methodist at San Antonio (MSA) search for matches whenever a new

1See section 1.2.1 for an introduction on kidney exchange.
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pair becomes available. In the United States, competition among KPD programs to pro-

duce transplants may have incentivized programs to perform match-runs at high frequency,

which raises a major concern that such frequent matching may lead to fewer transplants

[59]. In particular, matching frequently may lead to inefficient use of easy-to-match donors

and missed opportunities for the most sensitized candidates. This article studies the impact

of matching frequencies on the number of potential transplants and on the average wait-

ing time to transplant in a pool of candidate-donor pairs. While matching frequency may

affect outcomes by changing the pool size, other factors that determine pool size include

acquisition rate and departure rate. This article further explores how these factors impact

the fraction of the pool transplanted. We use the set of enrolled pairs from both the APD

over a 9-year period and the MSA over a 3.5-year period. The MSA and APD provide us

with 2 distinct, nonoverlapping datasets with very different pools of participating pairs (eg,

number of: blood type O donors, easy-to-match pairs, NDDs, and compatible pairs) and

different operational practices that significantly impact the connectivity of the respective

pools. These different datasets allow us to evaluate the effects of match-run frequency in

very different environments, thus providing a robustness check for the policies studied.

3.2 Methods

3.2.1 Data

The APD data consist of the characteristics of all incompatible pairs, NDDs and patients

without a donor who enrolled in the APD registry between January 1, 2007 and August 11,

2016, including 1571 incompatible pairs and 50 NDDs. The MSA data consist of similar data

for pairs entering from July 1, 2013 to February 1, 2017 including 592 pairs and 4 NDDs.

The pairs’ ABO distribution is given in Table 1 (for patients with multiple donors we select 1

donor randomly for this distribution) and Pool panel reactive antibodies (PRA) distribution

in Table 2.
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pABO \dABO AB B A O

AB 0.32 0.45 0.7 0.7

B 1.15 2.16 6.62 4.33

A 1.4 3.95 9.42 8.53

O 2.42 8.4 28.64 20.81

pABO \dABO AB B A O

AB 0 0 1.01 1.35

B 0.68 1.35 1.05 5.57

A 1.35 4.05 7.26 16.89

O 0.68 7.43 21.79 26.52

Table 3.1: Pairs type distribution in the Alliance for Paired Donation (APD) and Methodist
at San Antonio (MSA). Left: APD, Right: MSA

0-90 90-98 98-100

APD 0.5845 0.0946 0.3209

MSA 0.6416 0.1286 0.2298

Table 3.2: Pool Panel Reactive Antibodies (PRA) distribution in the MSA and APD pools.

The compatibility between a patient and a donor is determined by their blood types

and a virtual crossmatch test, which compares the patient’s antibodies (as entered by the

patient’s transplant center) and the donor’s human leukocyte antigen. In addition to the

virtual cross-match, transplant centers perform a crossmatch to verify compatibility. Finally,

proposed offers fail to culminate in transplants for a variety of reasons that we model with

failure rates described below. The 2 main types of failures occur due to positive crossmatch

and rejection of the proposed donor by the recipient’s center [59].

3.2.2 MSA vs APD data composition

This study does not allow us to compare the efficiency of the APD and MSA. Part of the

value of these 2 datasets is the real differences in the connectivity of the pools’ compatibility

graphs between APD and MSA (ie, to the extent to which pairs are likely to be able to

exchange with others in the pool). For example, the MSA dataset does not have to take

into account discretionary exclusion criteria by different transplant centers as is done in the
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APD, which lowers the connectivity of the APD pool. MSA further allows higher mean

fluorescence intensity (MFI) cutoffs than APD centers allow, which translates to more com-

patibilities between donors and patients and hence a more connected compatibility graph

(ie, more possibilities of donation from 1 pair to another). In addition, the MSA dataset has

more compatible pairs participating compared to APD and no "selection" in that all pairs

participate in the MSA system, whereas the APD loses easy-to-match and compatible pairs

due to internal matching outside the APD. MSA also has a higher percentage of pairs with

multiple donors than APD, again increasing possibilities of donation from 1 pair to another.

Because of the substantial differences between the 2 pools, the computational experiments

we conduct on each pool will be informative by providing "within-experiment" comparisons

of different match frequencies, etc. within each pool. The 2 very different pools will in turn

allow us to explore the impact of match-run frequency in the presence of differences such

as arrival rate, composition of the pool (ie, number of blood type O donors, easy-to-match

pairs, number of NDDs, number of compatible pairs) and departure rate, as well as the

connectivity of the pools discussed above.

3.2.3 Optimization

For each match-run, we execute the matching algorithm on the available pool of incompatible

pairs and NDDs to find a maximum "weighted" solution. One type of sensitivity analysis

we conduct is to vary the priorities assigned to different patients based on their level of

sensitization. We tested 3 strategies (S1, S2, S3) that use different weights assigned to a

given patient’s transplant based on the patient’s calculated PRA (cPRA) (Table 3). Waiting

time was not prioritized in these strategies because in the steady state, this will not change

the average waiting time, due to Little’s Law [131]. Our matching algorithm allows for

cycles/loops of length at most 3 and chains of any length. The last donor of a chain becomes

a "bridge donor" who continues the chain in the next match-run. A chain is terminated if

the bridge donor remains in the pool for 3 months, by assuming the bridge donor donates to

a patient on the deceased donor waiting list who does not have an incompatible donor. We
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do not include the chain-ending transplant in our analysis in order not to bias the outcomes

of transplanted patients in the pool (eg, the large number of patients on the deceased donor

waiting list allows ending chains with very highly sensitized patients).

cPRA S1 S2 S3

98-100 1.05 2 10

90-98 1.05 1.5 5

80-90 1.05 1.05 2

0-80 1 1 1

Table 3.3: Base weights assigned by strategies 1 through 3 (S1-S3). Strategies S1, S2, S3 set
the weight only according to the recipient’s calculated panel reactive antibodies (cPRA).

3.2.4 Simulation Design

For each set of parameters, we run Monte Carlo simulations for 50 iterations. In each

iteration we simulate the arrival of 5000 pairs and a small fraction of NDDs. The goal is to

analyze the steady state that is reached by having a departure rate as described below. Each

time period (number of days) we sample from the data pairs and NDDs with replacement

according to some fixed arrival rate. In the base case, a pair or an NDD joins the pool

every 2 days. We also simulate the departure of pairs and NDDs from the pool without

being matched as observed in the data. For the APD, we set the number of NDDs that

join the pool (during the arrival of 5000 pairs) to 160. The base case departure rate for

the APD data is estimated using a Cox model, and on average a pair or NDD remains

in the pool for 420 days (this rate varies only slightly across different types of pairs). In

particular, each pair or NDD leaves the pool with probability 1/420 per day independently

for reasons other than a match within the pool. We further conduct sensitivity analysis

both on arrival rates and departure rates. For the MSA data we do not have good estimates

and set the base case average stay in the pool to 800 days. This was chosen to be larger

than the estimated departure rate of the APD because pairs at the MSA do not enroll in

competing exchange programs (but here too we conduct a sensitivity analysis). Due to the
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very small number of NDDs in the MSA data, we restrict attention only to pairs and thus

assume there are no chains when using MSA data (however, we also conducted simulations

with chains and found similar qualitative results). While the simulation is run until all pairs

have arrived, statistics are measured only for pairs that arrived after the 100th pair arrived

to decrease the biases at the "beginning" of the simulation and capture steady-state results.

Simulations were run for different matching frequencies. We model the failure rate of match

offers being converted to transplants. In APD, after the matching algorithm identifies a

match, each candidate’s center has up to 1 day to accept the offer or not. Some offers are

turned down by centers for nonimmunological reasons despite the fact that they should have

preselected only donors that are acceptable for their patients. If all offers within a chain

or a loop are accepted, centers are asked to conduct the actual cross-matches and exchange

more extensive patient and donor medical records. Using estimates from Fumo et al. [59],

1-way offers are estimated to be rejected 27% of the time; the involved pairs are returned to

the pool after keeping them inactive for the time it takes to add 1 pair to the pool. Actual

crossmatch failures were set to occur with a probability of 38% for patients with cPRA >90

and 10% for all other patients. The transplants in the chain were conducted until the first

failure. Two types of models are simulated for realizing and resolving failures motivated

by practices in single and multihospital exchange programs: No-delay model: Failures are

realized immediately, allowing for instantaneous reoptimization. This model concentrates

on the impact of waiting between match-runs. This model is equivalent to reoptimizing

immediately after every failure over the entire pool. (A similar reoptimization approach is

adopted in single-center programs such as MSA and partially in national programs such as

the United Kingdom and The Netherlands.) Delay model: Failures are resolved over time

as observed in US multihospital KPD registries. In our simulations, a pair becomes inactive

during an offer stage until 2 days elapse and during a crossmatch stage it is inactive until

7 more days elapse. Patients were considered transplanted if there were no failures in the

chain or cycle. All the simulations using MSA data assume the no-delay model, as MSA is a

single-center program that can reoptimize immediately after some failure occurred. In fact,
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most simulations are conducted under the no-delay model in order to evaluate the impact of

policies on transplants in "best-case" scenarios.

3.3 Results

The measured simulation outcomes are the fraction of patient-donor pairs transplanted and

the average waiting time to transplants experienced by the candidates over the entire study.

Simulations were run with the intervals between match-runs of 2, 4, 7, 14, 30, 60, and 120

days.

3.3.1 Impact of match-run frequency under different prioritization

strategies

We first test the effect of varying the interval between match-runs under different prioriti-

zation strategies. Figure 1 describes outcomes under the delay model (failures are resolved

over time) and Figure 2 describes outcomes under the no-delay model (immediate resolution

of failures).

The top left plots of Figures 1 and 2 show that under both models, regardless of the

prioritization strategy, the average fraction of transplanted patients decreases as the interval

between match-runs exceeds 7-14 days. Top right plots of these figures show that the average

waiting time increases as the interval between match-runs increases. The effect of change is

more significant in Figure 1 than in Figure 2 because the time required to resolve failures

harms the match rate and the waiting time. This is most evident in the bottom right plots,

which show the average waiting time for overdemanded (easy-to-match pairs); these pairs

can match immediately when failures are resolved immediately (explaining why the average

waiting time is about half the length of interval between match-runs), but have to wait

significantly more to be part of a cycle or a chain when failures take time to resolve. Some

prioritization may help the most highly sensitized patients (middle plots in Figures 1 and

2). However, in those cases fewer low sensitized patients and fewer underdemanded pairs
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under	the	no-	delay	model	in	order	to	evaluate	the	impact	of	policies	
on	transplants	in	“best-	case”	scenarios.

3  | RESULTS

The	measured	 simulation	 outcomes	 are	 the	 fraction	 of	 patient-	donor	
pairs	transplanted	and	the	average	waiting	time	to	transplants	experi-
enced	by	the	candidates	over	the	entire	study.	Simulations	were	run	with	
the	intervals	between	match-	runs	of	2,	4,	7,	14,	30,	60,	and	120	days.

3.1 | Impact of match- run frequency under different 
prioritization strategies

We	first	 test	 the	effect	of	varying	the	 interval	between	match-	runs	
under	different	prioritization	strategies.	Figure	1	describes	outcomes	
under	the	delay	model	(failures	are	resolved	over	time)	and	Figure	2	
describes	outcomes	under	the	no-	delay	model	(immediate	resolution	
of	failures).

The	top	left	plots	of	Figures	1	and	2	show	that	under	both	mod-
els,	 regardless	 of	 the	 prioritization	 strategy,	 the	 average	 fraction	 of	

transplanted	patients	decreases	as	 the	 interval	between	match-	runs	
exceeds	7-	14	days.	Top	right	plots	of	these	figures	show	that	the	av-
erage	waiting	time	increases	as	the	 interval	between	match-	runs	 in-
creases.	The	effect	of	change	 is	more	significant	 in	Figure	1	 than	 in	
Figure	2	because	the	time	required	to	resolve	failures	harms	the	match	
rate	 and	 the	waiting	 time.	This	 is	most	 evident	 in	 the	 bottom	 right	
plots,	which	show	the	average	waiting	time	for	overdemanded	(easy-	
to-	match	 pairs);	 these	 pairs	 can	 match	 immediately	 when	 failures	
are	resolved	immediately	(explaining	why	the	average	waiting	time	is	
about	 half	 the	 length	 of	 interval	 between	match-	runs),	 but	 have	 to	
wait	significantly	more	to	be	part	of	a	cycle	or	a	chain	when	failures	
take time to resolve.

Some	 prioritization	 may	 help	 the	 most	 highly	 sensitized	 pa-
tients	 (middle	 plots	 in	 Figures	1	 and	 2).	 However,	 in	 those	 cases	
fewer	low	sensitized	patients	and	fewer	underdemanded	pairs	are	
transplanted	 (patients-	donor	pairs	with	ABO	types	X-	Y	are	under-
demanded	 if	 they	need	a	 scarcer	kidney	 than	 they	are	offering	 in	
exchange	(ie,	if	X	is	ABO	compatible	with	Y	but	Y	is	not	ABO	com-
patible	with	X);	that	includes	O-	A,	O-	B,	O-	AB,	A-	AB,	B-	AB).	We	re-
port	very	similar	qualitative	results	using	MSA	data	(Figure	3).	While	
the	qualitative	observations	are	similar,	there	are	large	differences	

F IGURE  1 Statistics	under	the	
delay	model	using	APD	data.	The	x-	axis	
represents	the	time	interval	between	2	
match-	runs.	Strategies	S1-	S3	are	defined	
in	the	“strategies”	section	and	Table	3.	
(Top	left)	Fraction	of	matched	pairs.	(Top	
right)	Average	waiting	time.	(Middle)	
Fraction	of	match	patients	with	high	PRA.	
(Bottom)	Fraction	of	underdemanded	
pairs	matched	and	the	average	waiting	
time	of	overdemanded	pairs	with	low	
PRA. APD, Alliance for Paired Donation; 
OD,	overdemanded;	PRA,	panel	
reactive	antibodies;	UD,	underdemanded	
[Color	figure	can	be	viewed	at	
wileyonlinelibrary.com]
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Figure 3-1: Statistics under the delay model using APD data. The x-axis represents the
time interval between 2 match-runs. Strategies S1-S3 are defined in the "strategies" section
and Table 3. (Top left) Fraction of matched pairs. (Top right) Average waiting time.
(Middle) Fraction of match patients with high PRA. (Bottom) Fraction of underdemanded
pairs matched and the average waiting time of overdemanded pairs with low PRA. APD,
Alliance for Paired Donation; OD, overdemanded; PRA, panel reactive antibodies; UD,
underdemanded
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between	 the	MSA	 and	APD	 (for	 instance,	 11%	 difference	 in	 the	
fraction	 of	 matched	 pairs,	 Figures	2	 and	 3,	 under	 the	 no-	delay	
model).	This	 difference	 in	 the	 fraction	of	matched	pairs	 is	 due	 to	
differences	 in	 the	 connectivity	of	 the	pools.	Note	 that	 in	Table	1,	
the	 ratios	 of	O	 donors	 to	O	patients	 are	 .57	 and	 .89	 in	 the	APD	
and	MSA	pools,	respectively.	Also,	34.4%	of	APD	pairs	contain	an	
O	donor,	whereas	50.3%	of	the	MSA	pairs	have	an	O	donor,	which	
strongly	impacts	the	difference	in	fraction	matched	and	the	differ-
ence	in	fraction	of	underdemanded	matched.	Thus,	independent	of	
the	pool	connectivity,	matching	infrequently	does	not	increase	the	
fraction	of	matched	pairs.

We	 emphasize	 that	 a	 low	 matching	 frequency	 under	 the	 delay	
model	is	not	very	practical	since	this	requires	the	KPD	program	to	wait	
with	failed	matches	(without	reoptimizing)	until	the	next	match-	run.

We	next	focus	on	the	no-	delay	model	where	failures	are	resolved	
immediately	 (if	 infrequent	matching	 is	 not	 helpful	 for	 this	model,	 it	
is	not	expected	 to	be	helpful	under	 the	delay	model).	For	 simplicity	
we	also	present	 the	next	 results	only	 for	 strategy	S2	as	we	 find	no	
qualitative	differences	between	the	3	strategies	in	the	simulations.	For	
clarity	we	present	the	next	results	only	under	strategy	S2	as	we	find	no	
qualitative	differences	in	the	simulations.

3.2 | Varying arrival and/or departure rates

We	conduct	sensitivity	analysis	on	the	arrival	rate	of	new	pairs	(base	
case	is	1	arrival	every	2	days	=	1	period)	and	report	in	Figure	4	sim-
ulation	results	under	the	no-	delay	model	when	a	pair	arrives	every	
t	 periods	 (t	=	1,	 2,	 4,	 7,	 14).	 For	 each	 arrival	 rate,	 the	 fraction	 of	
transplanted	pairs	does	not	increase	as	the	interval	between	match-	
runs	increases.	However,	the	greater	the	arrival	rate,	the	greater	the	
fraction	of	transplanted	pairs	and	the	lower	the	waiting	time	(note:	
the	larger	the	t,	the	lower	the	arrival	rate).	The	bottom	plots	provide	
a	different	view	of	the	results.	Note	that	the	arrival	rate	is	a	major	
factor	 determining	 the	 fraction	 of	 transplanted	 patients,	whereas	
the	matching	frequency	plots	essentially	coincide	(except	the	low-
est	frequencies).	The	lower	the	arrival	rate	the	more	benefit	there	is	
to	increase	arriving	pairs.	This	benefit	is	minor	for	very	high	arrival	
rates	(after	350-	700	pairs	annually).

We	also	varied	the	average	time	a	pair	remains	in	the	pool	in	MSA	
and	APD	(x	=	420,	800,	1000).	The	results	(Figure	5)	show	that	as	the	
departure	 rate	becomes	 large	 (1/x),	 the	smaller	 the	 fraction	of	pairs	
that	 are	 transplanted.	 However,	 for	 every	 departure	 rate,	 match-
ing	frequently	does	not	harm	the	fraction	of	matched	pairs.	Like	the	

F I G U R E  2 Statistics	under	the	no-	
delay	model	using	APD	data.	The	x-	axis	
represents	the	time	interval	between	2	
match-	runs.	Strategies	S1-	S3	are	defined	
in	the	“strategies”	section	and	Table	3.	
(Top	left)	Fraction	of	matched	pairs.	(Top	
right)	Average	waiting	time.	(Middle)	
Fraction	of	match	patients	with	high	PRA.	
(Bottom)	Fraction	of	underdemanded	
pairs	matched	and	the	average	waiting	
time	of	overdemanded	pairs	with	low	
PRA. APD, Alliance for Paired Donation; 
OD,	overdemanded;	PRA,	panel	
reactive	antibodies;	UD,	underdemanded	
[Color	figure	can	be	viewed	at	
wileyonlinelibrary.com]
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Figure 3-2: Statistics under the no-delay model using APD data. The x-axis represents
the time interval between 2 match-runs. Strategies S1-S3 are defined in the "strategies"
section and Table 3. (Top left) Fraction of matched pairs. (Top right) Average waiting time.
(Middle) Fraction of match patients with high PRA. (Bottom) Fraction of underdemanded
pairs matched and the average waiting time of overdemanded pairs with low PRA. APD,
Alliance for Paired Donation; OD, overdemanded; PRA, panel reactive antibodies; UD,
underdemanded
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are transplanted (patients-donor pairs with ABO types X-Y are under-demanded if they

need a scarcer kidney than they are offering in exchange (ie, if X is ABO compatible with

Y but Y is not ABO compatible with X); that includes O-A, O-B, O-AB, A-AB, B-AB).

We report very similar qualitative results using MSA data (Figure 3). While the qualitative

observations are similar, there are large differences between the MSA and APD (for instance,

11% difference in the fraction of matched pairs, Figures 2 and 3, under the no-delay model).

This difference in the fraction of matched pairs is due to differences in the connectivity of

the pools. Note that in Table 1, the ratios of O donors to O patients are .57 and .89 in the

APD and MSA pools, respectively. Also, 34.4% of APD pairs contain an O donor, whereas

50.3% of the MSA pairs have an O donor, which strongly impacts the difference in fraction

matched and the difference in fraction of underdemanded matched. Thus, independent of

the pool connectivity, matching infrequently does not increase the fraction of matched pairs.
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F I G U R E  3 Statistics	under	the	no-	
delay	model	using	MSA	data.	The	x-	axis	
represents	the	time	interval	between	2	
match-	runs.	Strategies	S1-	S3	are	defined	
in	the	“strategies”	section	and	Table	3.	
(Top	left)	Fraction	of	matched	pairs.	(Top	
right)	Fraction	of	matched	patients	with	
PRA	98-	100.	(Bottom	left)	Fraction	of	
match	patients	with	PRA	90-	98.	(Bottom	
right)	Fraction	of	matched	underdemanded	
pairs.	MSA,	Methodist	at	San	Antonio;	
PRA,	panel	reactive	antibodies;	UD,	
underdemanded	[Color	figure	can	be	
viewed	at	wileyonlinelibrary.com]
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F I G U R E  4 Sensitivity	analysis	over	
arrival	rates	under	the	no-	delay	model	and	
strategy	S2	in	APD	and	MSA	datasets.	In	
the	first	4	figures,	each	curve	represents	
an	arrival	rate	by	the	number	of	days	
between	the	arrival	of	each	pair	or	NDD,	
and	the	x-	axis	represents	the	time	interval	
between	2	match-	runs.	The	2	bottom	
figures	are	similar	to	the	top	2	figures	only	
the	x-	axis	represent	the	number	of	pairs	
arriving	per	year	and	each	curve	represents	
the	interval	length	between	2	match-	
runs. APD, Alliance for Paired Donation; 
MSA,	Methodist	at	San	Antonio;	NDD,	
nondirected	donor	[Color	figure	can	be	
viewed	at	wileyonlinelibrary.com]
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Figure 3-3: Statistics under the no-delay model using MSA data. The x-axis represents the
time interval between 2 match-runs. Strategies S1-S3 are defined in the "strategies" section
and Table 3. (Top left) Fraction of matched pairs. (Top right) Fraction of matched patients
with PRA 98-100. (Bottom left) Fraction of match patients with PRA 90-98. (Bottom right)
Fraction of matched underdemanded pairs. MSA, Methodist at San Antonio; PRA, panel
reactive antibodies; UD, underdemanded
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We emphasize that a low matching frequency under the delay model is not very practical

since this requires the KPD program to wait with failed matches (without reoptimizing)

until the next match-run. We next focus on the no-delay model where failures are resolved

immediately (if infrequent matching is not helpful for this model, it is not expected to be

helpful under the delay model). For simplicity we also present the next results only for

strategy S2 as we find no qualitative differences between the 3 strategies in the simulations.

For clarity we present the next results only under strategy S2 as we find no qualitative

differences in the simulations.

3.3.2 Varying arrival and/or departure rates

We conduct sensitivity analysis on the arrival rate of new pairs (base case is 1 arrival every

2 days = 1 period) and report in Figure 4 simulation results under the no-delay model when

a pair arrives every t periods (t = 1, 2, 4, 7, 14). For each arrival rate, the fraction of

transplanted pairs does not increase as the interval between match-runs increases. However,

the greater the arrival rate, the greater the fraction of transplanted pairs and the lower the

waiting time (note: the larger the t, the lower the arrival rate). The bottom plots provide

a different view of the results. Note that the arrival rate is a major factor determining the

fraction of transplanted patients, whereas the matching frequency plots essentially coincide

(except the lowest frequencies). The lower the arrival rate the more benefit there is to

increase arriving pairs. This benefit is minor for very high arrival rates (after 350-700 pairs

annually).

We also varied the average time a pair remains in the pool in MSA and APD (x = 420,

800, 1000). The results (Figure 5) show that as the departure rate becomes large (1/x),

the smaller the fraction of pairs that are transplanted. However, for every departure rate,

matching frequently does not harm the fraction of matched pairs. Like the impact of arrival

rate, decreasing departure rate increases the fraction of transplanted patients.
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F I G U R E  3 Statistics	under	the	no-	
delay	model	using	MSA	data.	The	x-	axis	
represents	the	time	interval	between	2	
match-	runs.	Strategies	S1-	S3	are	defined	
in	the	“strategies”	section	and	Table	3.	
(Top	left)	Fraction	of	matched	pairs.	(Top	
right)	Fraction	of	matched	patients	with	
PRA	98-	100.	(Bottom	left)	Fraction	of	
match	patients	with	PRA	90-	98.	(Bottom	
right)	Fraction	of	matched	underdemanded	
pairs.	MSA,	Methodist	at	San	Antonio;	
PRA,	panel	reactive	antibodies;	UD,	
underdemanded	[Color	figure	can	be	
viewed	at	wileyonlinelibrary.com]
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F I G U R E  4 Sensitivity	analysis	over	
arrival	rates	under	the	no-	delay	model	and	
strategy	S2	in	APD	and	MSA	datasets.	In	
the	first	4	figures,	each	curve	represents	
an	arrival	rate	by	the	number	of	days	
between	the	arrival	of	each	pair	or	NDD,	
and	the	x-	axis	represents	the	time	interval	
between	2	match-	runs.	The	2	bottom	
figures	are	similar	to	the	top	2	figures	only	
the	x-	axis	represent	the	number	of	pairs	
arriving	per	year	and	each	curve	represents	
the	interval	length	between	2	match-	
runs. APD, Alliance for Paired Donation; 
MSA,	Methodist	at	San	Antonio;	NDD,	
nondirected	donor	[Color	figure	can	be	
viewed	at	wileyonlinelibrary.com]

0

0.2

0.4

0.6

2 4 7 14 30 60 120

APD, fraction matched

1 2 4 7 14

0.3

0.4

0.5

0.6

2 4 7 14 30 60 120

MSA, fraction matched

1 2 4 7 14

0
50

100
150
200
250

2 4 7 14 30 60 120

APD, average waiting time

1 2 4 7 14

0

100

200

300

2 4 7 14 30 60 120

MSA, waiting time

1 2 4 7 14

0

0.2

0.4

0.6

0 200 400 600 800

APD, fraction matched vs arrivals/yr

2 4 7 14
30 60 120

Figure 3-4: Sensitivity analysis over arrival rates under the no-delay model and strategy S2
in APD and MSA datasets. In the first 4 figures, each curve represents an arrival rate by the
number of days between the arrival of each pair or NDD, and the x-axis represents the time
interval between 2 match-runs. The 2 bottom figures are similar to the top 2 figures only the
x-axis represent the number of pairs arriving per year and each curve represents the interval
length between 2 match- runs. APD, Alliance for Paired Donation; MSA, Methodist at San
Antonio; NDD, nondirected donor
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impact	of	arrival	rate,	decreasing	departure	rate	increases	the	fraction	
of transplanted patients.

3.3 | Varying practical constraints: NDDs and 
cycle length

We	 ran	 similar	 simulations	 to	 explore	 different	 constraints.	
Simulations	assuming	no	NDDs	in	the	APD	result	in	similar	patterns	
(Figure	6	left).	We	relaxed	the	maximum	cycle	length	to	allow	for	4-	
way	cycles,	and,	while	the	fraction	of	patients	transplanted	increases,	
frequent	matching	does	not	harm	the	fraction	of	transplanted	pairs	
(Figure	6	right).

3.4 | Match efficiency

One	indicator	of	the	matching	efficiency	of	a	KPD	program	is	the	frac-
tion	of	blood	type	O	donor	kidneys	that	are	transplanted	into	blood	
type	O	patients	(intuitively,	in	a	very	large	pool	all	blood	type	O	donor	
kidneys	would	be	transplanted	into	blood	type	O	patients).	Figure	7	
shows	 that	 using	 longer	match-	run	 intervals	 does	 not	 increase	 this	
measure	under	different	prioritization	strategies	and	different	arrival	

rates.	However,	 increasing	 the	 arrival	 rate	 results	 in	 a	higher	blood	
type	O	match	efficiency.

4  | DISCUSSION

As	 KPD	 has	 become	more	widely	 used,	 the	 databases	 of	 patients	
and	donors	have	grown	rapidly	and	they	contain	a	large	fraction	of	
highly	sensitized	patients.21	It	is	therefore	important	to	evaluate	the	
effect	of	increasing	the	pool	size	in	order	to	create	more	opportuni-
ties	for	these	patients.	To	do	so	we	vary	the	match-	run	frequencies	
(which	 can	 be	 determined	 by	 the	KPD	program)	 but	 also	 vary	 the	
exogenous	arrival	rate	(which	is	a	consequence	of	participation	and	
collaboration).

Using	the	accumulated	patient/donor	pool	at	 the	APD	and	MSA	
databases,	we	modeled	running	a	matching	algorithm,	making	match	
offers,	accounting	for	rejected	offers,	and	simulated	laboratory	cross-
matches.	We	varied	the	match-	run	frequency,	the	arrival	rate	to	the	
pool,	and	the	departure	rate	from	the	pool.	Sensitivity	analyses	were	
performed	 for	 pool	 connectivity,	 priorities	 assigned	 to	 highly	 sensi-
tized	patients,	failure	rates,	use	of	NDDs,	and	chain/cycle	length.	We	

F I G U R E  5 Sensitivity	analysis	over	
departure	rates	under	the	no-	delay	
model	and	strategy	S2	in	the	APD	and	
MSA	data.	The	x-	axis	represents	the	time	
interval	between	2	match-	runs.	Each	line	
represents	a	different	departure	rate	where	
the	numbers	correspond	to	the	average	
number	of	days	a	pair	remains	in	the	pool	
without	being	matched.	(Left)	Fraction	of	
matched	pairs.	(Right)	Average	waiting	time.	
APD,	Alliance	for	Paired	Donation;	MSA,	
Methodist	at	San	Antonio	[Color	figure	can	
be	viewed	at	wileyonlinelibrary.com]
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F IGURE  6 Different	number	of	NDDs	(left)	and	different	cycle	length	(right).	Both	simulations	use	the	no-	delay	model	and	strategy	S2.	The	
x-	axis	represents	the	time	interval	between	2	match-	runs.	Testing	base	case	arrival	of	NDDs	(160)	and	no	NDDs	at	all.	(Left)	Testing	both	3-	way	
and	4-	way	cycles.	(Right)	Average	waiting	time.	APD,	Alliance	for	Paired	Donation;	MSA,	Methodist	at	San	Antonio;	NDDs,	nondirected	donors	
[Color	figure	can	be	viewed	at	wileyonlinelibrary.com]
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Figure 3-5: Sensitivity analysis over departure rates under the no-delay model and strategy
S2 in the APD and MSA data. The x-axis represents the time interval between 2 match-
runs. Each line represents a different departure rate where the numbers correspond to the
average number of days a pair remains in the pool without being matched. (Left) Fraction
of matched pairs. (Right) Average waiting time. APD, Alliance for Paired Donation; MSA,
Methodist at San Antonio

3.3.3 Varying practical constraints: NDDs and cycle length

We ran similar simulations to explore different constraints. Simulations assuming no NDDs

in the APD result in similar patterns (Figure 6 left). We relaxed the maximum cycle length

to allow for 4-way cycles, and, while the fraction of patients transplanted increases, frequent

matching does not harm the fraction of transplanted pairs (Figure 6 right).

3.3.4 Match efficiency

One indicator of the matching efficiency of a KPD program is the fraction of blood type O

donor kidneys that are transplanted into blood type O patients (intuitively, in a very large
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impact	of	arrival	rate,	decreasing	departure	rate	increases	the	fraction	
of transplanted patients.

3.3 | Varying practical constraints: NDDs and 
cycle length

We	 ran	 similar	 simulations	 to	 explore	 different	 constraints.	
Simulations	assuming	no	NDDs	in	the	APD	result	in	similar	patterns	
(Figure	6	left).	We	relaxed	the	maximum	cycle	length	to	allow	for	4-	
way	cycles,	and,	while	the	fraction	of	patients	transplanted	increases,	
frequent	matching	does	not	harm	the	fraction	of	transplanted	pairs	
(Figure	6	right).

3.4 | Match efficiency

One	indicator	of	the	matching	efficiency	of	a	KPD	program	is	the	frac-
tion	of	blood	type	O	donor	kidneys	that	are	transplanted	into	blood	
type	O	patients	(intuitively,	in	a	very	large	pool	all	blood	type	O	donor	
kidneys	would	be	transplanted	into	blood	type	O	patients).	Figure	7	
shows	 that	 using	 longer	match-	run	 intervals	 does	 not	 increase	 this	
measure	under	different	prioritization	strategies	and	different	arrival	

rates.	However,	 increasing	 the	 arrival	 rate	 results	 in	 a	higher	blood	
type	O	match	efficiency.

4  | DISCUSSION

As	 KPD	 has	 become	more	widely	 used,	 the	 databases	 of	 patients	
and	donors	have	grown	rapidly	and	they	contain	a	large	fraction	of	
highly	sensitized	patients.21	It	is	therefore	important	to	evaluate	the	
effect	of	increasing	the	pool	size	in	order	to	create	more	opportuni-
ties	for	these	patients.	To	do	so	we	vary	the	match-	run	frequencies	
(which	 can	 be	 determined	 by	 the	KPD	program)	 but	 also	 vary	 the	
exogenous	arrival	rate	(which	is	a	consequence	of	participation	and	
collaboration).

Using	the	accumulated	patient/donor	pool	at	 the	APD	and	MSA	
databases,	we	modeled	running	a	matching	algorithm,	making	match	
offers,	accounting	for	rejected	offers,	and	simulated	laboratory	cross-
matches.	We	varied	the	match-	run	frequency,	the	arrival	rate	to	the	
pool,	and	the	departure	rate	from	the	pool.	Sensitivity	analyses	were	
performed	 for	 pool	 connectivity,	 priorities	 assigned	 to	 highly	 sensi-
tized	patients,	failure	rates,	use	of	NDDs,	and	chain/cycle	length.	We	

F I G U R E  5 Sensitivity	analysis	over	
departure	rates	under	the	no-	delay	
model	and	strategy	S2	in	the	APD	and	
MSA	data.	The	x-	axis	represents	the	time	
interval	between	2	match-	runs.	Each	line	
represents	a	different	departure	rate	where	
the	numbers	correspond	to	the	average	
number	of	days	a	pair	remains	in	the	pool	
without	being	matched.	(Left)	Fraction	of	
matched	pairs.	(Right)	Average	waiting	time.	
APD,	Alliance	for	Paired	Donation;	MSA,	
Methodist	at	San	Antonio	[Color	figure	can	
be	viewed	at	wileyonlinelibrary.com]
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F IGURE  6 Different	number	of	NDDs	(left)	and	different	cycle	length	(right).	Both	simulations	use	the	no-	delay	model	and	strategy	S2.	The	
x-	axis	represents	the	time	interval	between	2	match-	runs.	Testing	base	case	arrival	of	NDDs	(160)	and	no	NDDs	at	all.	(Left)	Testing	both	3-	way	
and	4-	way	cycles.	(Right)	Average	waiting	time.	APD,	Alliance	for	Paired	Donation;	MSA,	Methodist	at	San	Antonio;	NDDs,	nondirected	donors	
[Color	figure	can	be	viewed	at	wileyonlinelibrary.com]
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Figure 3-6: Different number of NDDs (left) and different cycle length (right). Both simula-
tions use the no-delay model and strategy S2.The x-axis represents the time interval between
2 match-runs. Testing base case arrival of NDDs (160) and no NDDs at all. (Left) Test-
ing both 3-way and 4-way cycles. (Right) Average waiting time. APD, Alliance for Paired
Donation; MSA, Methodist at San Antonio; NDDs, nondirected donors

pool all blood type O donor kidneys would be transplanted into blood type O patients).

Figure 7 shows that using longer match-run intervals does not increase this measure under

different prioritization strategies and different arrival rates. However, increasing the arrival

rate results in a higher blood type O match efficiency.1184  |     ASHLAGI et AL.

find	that	matching	frequently	does	not	reduce	the	fraction	of	the	pool	
matched.	Importantly,	however,	the	fraction	of	the	pool	transplanted	
does	increase	as	either	the	arrival	rate	increases	or	the	departure	rate	
decreases.	In	fact,	increasing	arrival	rate	is	the	most	important	modi-
fiable	factor	to	increase	the	fraction	of	the	pool	transplanted,	particu-
larly	for	low	arrival	rates.	While	the	exact	numbers	might	differ	across	
datasets,	the	general	principles	will	still	hold.

These	results	help	illustrate	why	the	size	of	the	pool	is	not	by	itself	
a	good	indicator	of	the	fraction	of	patients	who	can	be	transplanted.	A	
large	arrival	rate	means	a	large	pool	with	many	matchable	pairs,	while	
a	low	fraction	of	transplantable	patients	can	also	produce	a	large	pool,	
but	of	hard-	to-	match	pairs.

The	lesson	for	the	United	States	is	that	KPD	programs	should	con-
sider	efforts	to	collaborate	to	increase	their	arrival	rate.	While	waiting	
1-	2	weeks	between	match-	runs	does	not	reduce	the	fraction	of	pool	
transplanted,	using	this	time	to	clarify	competing	matches	for	easy-	to-	
match	pairs	by	using	different	strategies	may	help	to	achieve	predeter-
mined	goals	such	as	more	transplants	for	hard-	to-	match	patients.	For	
non-	US	KPD	programs	that	perform	match-	runs	less	frequently	than	
every	month	and	have	nonnegligible	departure	rates,	it	may	worth	ex-
perimenting	with	more	frequent	match-	runs.	Finally,	non-	US	programs	
with	a	low	acquisition	rate	and	low	match	rate	may	benefit	from	inter-
national	collaboration	to	 increase	their	acquisition	rate.	This	 is	 likely	
to	have	a	much	larger	impact	on	the	fraction	of	the	pool	they	match	
than	 does	match	 frequency.	The	 logistics	 of	 international	 exchange	
currently	 serve	 as	 a	 barrier	 to	 broader	 collaboration,	 and	 strategies	
to	overcome	these	barriers	should	become	an	active	area	of	research.

Intuitively,	 matching	 frequently	 does	 not	 harm	 the	 fraction	 of	
transplanted	 patients	 because	 both	 underdemanded	 pairs	 (such	 as	
O-	A	patient-	donor	pairs)	and	highly	sensitized	patients	accumulate	in	
the	pool.	When,	for	example,	a	patient-	donor	A-	O	pair	arrives,	if	the	
patient	is	low	sensitized	the	pair	can	match	immediately	with	an	O-	A	
pair,	which	 is	an	efficient	match.	 If	 the	A	patient	 is	highly	sensitized	
and	cannot	match	with	any	of	 the	accumulated	O-	A	pairs,	 it	 is	 also	
unlikely	that	this	patient	can	match	any	pair	arriving	in	the	near	future,	
so	 it	does	not	 increase	the	total	number	of	 transplants	 to	postpone	
matching	other	pairs	until	a	donor	compatible	with	this	patient	arrives.	
Put	differently,	when	the	departure	rate	is	 low,	many	hard-	to-	match	

pairs	accumulate	in	the	pool	and	so	waiting	with	a	newly	arriving	easy-	
to-	match	pair	is	unnecessary	since	it	 is	 likely	to	match	to	one	of	the	
already	present	hard-	to-	match	pairs.	And	when	the	departure	rate	is	
high,	matching	infrequently	will	result	in	many	departures	of	easy-	to-	
match	pairs.

Moreover,	that	a	low	arrival	rate	yields	a	match	rate	below	the	
maximum	is	a	result	of	both	departures	of	unmatched	pairs	and	sub-
optimal	matching,	which	would	not	have	happened	in	a	thicker	pool.	
For	example,	with	 a	 low	arrival	 rate,	 some	O	donors	might	match	
A	 patients,	 but	with	 a	 large	 arrival	 rate	 such	A	 patients	 could	 be	
matched	by	A	donors	and	such	O	donors	could	match	O	patients.	
Finally,	it	is	worth	noting	Little’s	Law,20	which	states	that	in	steady	
state,	the	average	pool	size	equals	the	arrival	rate	multiplied	by	the	
average	time	a	pair	remains	in	the	pool	(whether	matched	eventu-
ally	or	not).	So	for	a	given	arrival	rate,	one	may	artificially	increase	
the	pool	size	by	waiting	between	match-	runs.	However,	this	can	in-
crease	 the	 average	waiting	 time	 as	well,	which	may	 lead	 to	more	
departures.

Since	matching	at	some	KPD	programs	in	the	United	States	is	more	
aligned	with	 the	delay	model,	 it	 is	 reasonable	 to	use	high	matching	
frequencies.	Our	results	suggest	that	even	under	the	no-	delay	model	
(where	failures	are	resolved	before	the	next	match	run),	high	matching	
frequency	is	a	reasonable	strategy.

Our	approach	 is	very	different	 from	that	of	Segev	et	al.22	 In	our	
approach	 the	 pool	 evolves	 dynamically	with	 arrival	 and	 departures	
modeled	 over	 time.	 Segev	 et	al22 examined a large static pool, and 
compared	matching	pairs	sequentially	using	a	“first-	accept”	approach,	
to	optimizing	over	the	entire	pool	(a	single	match-	run).	Matching	fre-
quently	 in	our	 (steady-	state)	model	 is	 thus	different	from	their	 first-	
accept	 approach.	 The	 key	 difference	 lies	 in	 the	 composition	 of	 the	
pool:	When	we	match	frequently	and	seek	to	match	an	easy-	to-	match	
pair,	 our	 evolving	 pool	 contains	 mostly	 hard-	to-	match	 pairs,	 while	
in	 their	model,	which	considers	a	single	matching	cycle,	 there	could	
be	many	 other	 easy-	to-	match	 pairs	 in	 the	 pool	 and	matching	 easy-	
to-	match	pairs	with	each	other	 is	often	 inefficient.	While	we	model	
departures,	our	findings	hold	even	for	very	low	departure	rates.	Finally,	
we	always	optimize	while	prioritizing	hard-	to-	match	pairs,	regardless	
of	the	matching	frequency.

F IGURE  7 Fraction	of	matched	O	
donors	that	are	matched	with	O	patients.	
The	left	plots	different	prioritization	
strategies	and	the	right	plots	different	
arrival	rates	for	strategy	S2.	The	x-	axis	
represents	the	time	interval	between	2	
match-	runs	[Color	figure	can	be	viewed	at	
wileyonlinelibrary.com]
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Figure 3-7: Fraction of matched O donors that are matched with O patients. The left plots
different prioritization strategies and the right plots different arrival rates for strategy S2.
The x-axis represents the time interval between 2 match-runs.
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3.4 Discussion

As KPD has become more widely used, the databases of patients and donors have grown

rapidly and they contain a large fraction of highly sensitized patients [78]. It is therefore im-

portant to evaluate the effect of increasing the pool size in order to create more opportunities

for these patients. To do so we vary the match-run frequencies (which can be determined by

the KPD program) but also vary the exogenous arrival rate (which is a consequence of partic-

ipation and collaboration). Using the accumulated patient/donor pool at the APD and MSA

databases, we modeled running a matching algorithm, making match offers, accounting for

rejected offers, and simulated laboratory cross-matches. We varied the match-run frequency,

the arrival rate to the pool, and the departure rate from the pool. Sensitivity analyses were

performed for pool connectivity, priorities assigned to highly sensitized patients, failure rates,

use of NDDs, and chain/cycle length. We find that matching frequently does not reduce the

fraction of the pool matched. Importantly, however, the fraction of the pool transplanted

does increase as either the arrival rate increases or the departure rate decreases. In fact,

increasing arrival rate is the most important modifiable factor to increase the fraction of

the pool transplanted, particularly for low arrival rates. While the exact numbers might

differ across datasets, the general principles will still hold. These results help illustrate why

the size of the pool is not by itself a good indicator of the fraction of patients who can be

transplanted. A large arrival rate means a large pool with many matchable pairs, while a low

fraction of transplantable patients can also produce a large pool, but of hard-to-match pairs.

The lesson for the United States is that KPD programs should consider efforts to collaborate

to increase their arrival rate. While waiting 1-2 weeks between match-runs does not reduce

the fraction of pool transplanted, using this time to clarify competing matches for easy-

to-match pairs by using different strategies may help to achieve predetermined goals such

as more transplants for hard-to-match patients. For non-US KPD programs that perform

match-runs less frequently than every month and have nonnegligible departure rates, it may

worth experimenting with more frequent match-runs. Finally, non-US programs with a low

acquisition rate and low match rate may benefit from international collaboration to increase
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their acquisition rate. This is likely to have a much larger impact on the fraction of the pool

they match than does match frequency. The logistics of international exchange currently

serve as a barrier to broader collaboration, and strategies to overcome these barriers should

become an active area of research. Intuitively, matching frequently does not harm the frac-

tion of transplanted patients because both underdemanded pairs (such as O-A patient-donor

pairs) and highly sensitized patients accumulate in the pool. When, for example, a patient-

donor A-O pair arrives, if the patient is low sensitized the pair can match immediately with

an O-A pair, which is an efficient match. If the A patient is highly sensitized and cannot

match with any of the accumulated O-A pairs, it is also unlikely that this patient can match

any pair arriving in the near future, so it does not increase the total number of transplants

to postpone matching other pairs until a donor compatible with this patient arrives. Put

differently, when the departure rate is low, many hard-to-match pairs accumulate in the pool

and so waiting with a newly arriving easy-to-match pair is unnecessary since it is likely to

match to one of the already present hard-to-match pairs. And when the departure rate is

high, matching infrequently will result in many departures of easy-to-match pairs. Moreover,

that a low arrival rate yields a match rate below the maximum is a result of both departures

of unmatched pairs and suboptimal matching, which would not have happened in a thicker

pool. For example, with a low arrival rate, some O donors might match A patients, but with

a large arrival rate such A patients could be matched by A donors and such O donors could

match O patients. Finally, it is worth noting Little’s Law [131], which states that in steady

state, the average pool size equals the arrival rate multiplied by the average time a pair re-

mains in the pool (whether matched eventually or not). So for a given arrival rate, one may

artificially increase the pool size by waiting between match-runs. However, this can increase

the average waiting time as well, which may lead to more departures. Since matching at

some KPD programs in the United States is more aligned with the delay model, it is rea-

sonable to use high matching frequencies. Our results suggest that even under the no-delay

model (where failures are resolved before the next match run), high matching frequency is

a reasonable strategy. Our approach is very different from that of Segev et al. [117] In our
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approach the pool evolves dynamically with arrival and departures modeled over time. Segev

et al. [117] examined a large static pool, and compared matching pairs sequentially using a

"first-accept" approach, to optimizing over the entire pool (a single match-run). Matching

frequently in our (steady-state) model is thus different from their first-accept approach. The

key difference lies in the composition of the pool: When we match frequently and seek to

match an easy-to-match pair, our evolving pool contains mostly hard-to-match pairs, while

in their model, which considers a single matching cycle, there could be many other easy-to-

match pairs in the pool and matching easy-to-match pairs with each other is often inefficient.

While we model departures, our findings hold even for very low departure rates. Finally, we

always optimize while prioritizing hard-to-match pairs, regardless of the matching frequency.

KPD programs vary in the priorities they use. Our findings suggest that while prioritiza-

tion of highly sensitized patients increases the percentage of these patients transplanted, it

does not significantly increase the total number of transplants. However, guidelines for how

to prioritize pairs can come from studying unmatched departures.

Some strategies used by MSA affect matching frequency and are driven by other factors.

Donors may have strong preferences over when to donate, so it is important to prioritize

donors whose window for donation closes soon. Moreover, compatible pairs should be given

high priority, otherwise they may choose to depart to conduct a direct transplant. These

strategies are consistent with matching frequently.

This study has limitations. Only a limited number of strategies are considered and some

other strategies may perform better. Strategies that consider the future may have benefits

over strategies that optimize in the current pool [45, 48]. However, this is unlikely when

the arrival rate is high, since it will be possible to match easy-to-match pairs upon arrival

to hard-to-match pairs due to the accumulation of the latter. Also, while patient data are

taken from actual KPD registries, we made simplifying assumptions that may weaken our

conclusions. We assumed failure rates are independent, and assumed a steady influx of pairs

into the database. However, we emphasize that while we report only a representative set

of simulations, we found similar qualitative findings under a much broader set of strategies
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and with lower failure rates. Also, while frequent and infrequent match-runs result in a

similar fraction of matched pairs, matching infrequently may allow an increase in match

quality. Additionally, departure rates in our simulations are identical for all pairs. If frequent

matching for a given KPD program is a good strategy with identical departure rates, it would

remain a good strategy also when easier-to-match pairs depart faster than harder-to-match

pairs since these pairs match quickly in our simulations. Finally, some departures are due to

transplants, which are good outcomes. Thus, the reasons for departures from a KPD pool

should be studied. We also do not explicitly study competition between KPD programs.

However, we predict the following effects: When patients do not cross-register, the existence

of multiple programs reduces the arrival rate of each; when some patients cross-register,

departure rates may be influenced by match rates at competing programs. So matching

frequency, by affecting the match rate, affects departures and arrivals at competing programs,

and the overall chance of a pair to match should be further studied. In summary, while we

do not find that frequent match-runs result in fewer transplants, we do find that increasing

arrival rates and decreasing departure rates improves both the fraction of matched pairs and

waiting times. So while the fraction of matched patients (and their waiting times) may be

harmed by competition among KPD programs, it is unlikely due to the high frequency of

match-runs, but rather due to low arrival rates of pairs and high departure rates.

63



64



Chapter 4

Cycle Length, Priority Schemes and

Matching Frequency
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4.1 Introduction

Kidney exchange pools currently experience a low arrival rate, and they contain a large

fraction of highly sensitized patients (Ashlagi et al. [14]), who may need to wait a very long

time to find a tissue-type compatible donor.1 As a result, many patient-donor pairs depart

the pool without being matched 2. The length of stay of pairs varies substantially from a

few days to several months depending on patient and donor characteristics.

Currently exchange programs periodically search for allocations, i.e. sets of disjoint

exchanges, that maximize the number of pairs matched. at different frequencies. One of

the major decision they are facing is how frequently to look for these allocations.3 On one

hand, waiting increases the chance that some pairs depart unmatched (especially pairs with

low sensitized patients); on the other hand, clearing the market too frequently may reduce

the number of transplants (especially for highly sensitized patients) by making suboptimal

matching decisions.

In this paper, we take a data-driven approach to model the dynamics of kidney exchange,

and study how the clearing frequency along with the length of exchange cycles impact the

number of matched patients over time. We analyze a rich data set from a large exchange

program (see Section 4.2 for details) to understand the keys features of this dynamic market.

In order for a patient to be transplanted with a donor’s kidney, they need to be blood-

type compatible as well as tissue-type compatible. Tissue type (or HLA)-compatibility is

determined by comparing the patient’s antibodies to the donor’s human leukocyte antigens.

Thus patients with a high number of antibodies will be less likely to find a compatible donor.

We say that such patients are highly sensitized, and this is measured with the Panel Reactive

Antibody (PRA). A patient’s PRA captures the likelihood the patient is HLA-incompatible

with a donor chosen at random in the population.

Ashlagi et al. [14] find that the percentage of highly sensitized patients (PRA above 95)

1This is partially since hospitals match internally their easy-to-match pairs and only register their hard-
to-match ones Ashlagi and Roth [13].

2There could be a few reasons for such departures: the pair finds a match in another pool or from a
deceased donor; the patient becomes too sick to transplant; the donor becomes unavailable.

3See section 3.1 for a discussion of the different match frequencies in KPD programs worldwide
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in the pool is significantly higher than what previous studies have assumed to support earlier

theoretical findings [107, 111]. We confirm these results with data from three different KPD

programs in the US. Figure 4-1(left) plots the PRA distributions of patients enrolled at

the NKR, APD and MSA. Note that blood-type compatibility is not incorporated in this

aggregate PRA distribution. Figure 4-1(right) provides the same distributions for patients

belonging to blood-type compatible pairs, who can match with each other if they are tissue-

type compatible. These distributions can be roughly viewed as bimodal; note that among

blood-type compatible pairs there are more highly sensitized patients than low sensitized

ones.
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Figure 4-1: PRA distributions of patients enrolled at NKR (1/2012-12/2014), APD (1/2007-
8/2016), and MSA (7/2013-2/2017). Left: all patients. Right: patients belonging to blood-
type compatible pairs.

This bimodal distribution leads us to split patient-donor pairs into two categories: we

will say that a patient-donor pair is easy-to-match if the patient has a PRA lower than 95.

Conversely, we will say that a pair is hard-to-match if the patient has a PRA above 95.

We find that even though hard-to-match pairs stay in the pool much longer, they still have

significantly less matching opportunities than easy-to-match pairs.

This raises the following questions: given the dynamics of kidney exchange pools, can we

understand how different priority and waiting mechanism impact different sub-populations

of pairs? In particular can we improve the likelihood that a highly sensitized patient gets

matched, and at what cost to the other patients? In this paper, we use our empirical findings

to develop a dynamic model of kidney exchange. Using theoretical analysis as well as data-
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driven simulation we then study the performance of a class of simple policies that, similar to

the current practice, periodically finds allocations. We compare different matching policies

that determine when to match and how to prioritize.

In particular, we analyze an algorithm, hereafter called 𝑏-batching, which “waits” to receive

𝑏 new pairs before it searches for a maximum size allocation in the existing pool. Motivated

by current practice, we will focus on small values of 𝑏4.

We consider an infinite horizon discrete time model where one pair arrives at every time-

step. Each arriving pair is sampled from a bi-modal distribution independently. We model

the length of stay of pairs as a Geometric random variable whose mean depends on its type.

As we show in section 4.2, on average, highly sensitized patients stay in the pool longer. We

model this arrival/depature dynamic along with the matching process as a Markov chain.

Because our focus is on helping highly sensitized patients, we will compare policies based on

the fraction of these patients that are matched in the long run (steady-state). We compare

the performance of 𝑏-batching policy to the special case of 𝑏 = 1, which we call the greedy

policy.

We first study the setting in which allocations include only cycles of length 2. We show

that, compared to the greedy policy, the benefit of 𝑏-batching is not significant (Theorem 1

and Remark 1). In contrast, we show that when cycles of length 3 are allowed, batching can

result in considerable gain over greedy (Theorem 2 and Remark 2). This result highlights the

fundamental difference between the structure of 2-way and 3-way cycles, and the importance

of modeling heterogeneity which allows us to give different priorities to different types. From

a design perspective, it implies that some waiting with the easy-to-match pairs can help

hard-to-match ones. Particulary, when an easy-to-match pair arrives that is compatible

with a hard-to-match patient in the pool, some waiting increases the likelihood that these

two pairs can be part of a 3-way cycle.

In our numerical study, we simulate the process by first using a survival model to esti-

mate departure rates, and then sampling patient-donor pairs from a clinical dataset. Our

4Intuitively, for large 𝑏, the loss due to departure will outweigh any potential benefit of waiting. As shown
in our simulation result, practical value of 𝑏 is between 1 and 10.
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simulation results confirm the insights developed in our theoretical analysis that certain form

of batching results in a significant gain in matching hard-to-match patients. However, when

restricted to only 2-way matching, batching has no practical impact. We also discuss the

impact of batching on the match rate for easy-to-match patients. Further, we extend our

simulation study to include all blood-types and discuss how that impacts the performance.

Matching highly sensitized patients is one of the main challenges in kidney exchange.

Giving priorities to these patients in the case of ties has been proven to be helpful (as we

also show in Section 4.5.3 - Fig 4-10). The dynamic nature of matchings creates another

dimension to prioritize hard-to-match pairs by making others “wait”. In this paper, through

data-driven modeling, theoretical analysis, and simulation using clinical data, we show that

(i) Making low sensitized pairs wait is only helpful if we allow for 3-way cycles in addition to

2-way cycles. (ii) Such a policy, even though beneficial for hard-to-match pairs, harms the

matching of low sensitized patients, as more of them will leave unmatched.

Our results may be of independent interest to the literature on dynamic matching in

random graphs. Kidney exchange serves well as an example for which we have distributional

information on the underlying graphs, thus we can exploit this information to make analysis

and prediction far more accurate than the worst-case analysis can do. We believe our average-

case analysis can have implications beyond the kidney exchange and can be applied to other

dynamic allocation problems with such distributional information.

4.1.1 Related work

Overall, as the literature on dynamic matching is developing, a clearer picture is emerging on

the impact of waiting. In completely homogenous settings with no knowledge of departure

times, waiting is ineffective Akbarpour et al. [4], Anderson et al. [9]. However, as the cur-

rent paper witnesses, in models where heterogeneity in compatibility and/or preferences are

incorporated, and more general forms of matching is allowed (e.g., 3-way cycles in addition

to 2-ways) some positive impacts of waiting become apparent (See also [22]). Ünver [126]

initiates the study of dynamic kidney exchange. He shows a closely related result to the
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static case under the assumption that no tissue-type incompatibilities exist. In particular,

waiting is not an issue when only blood type compatibilities are considered. Our work devi-

ates from his model by abstracting away from blood types and focusing on the tissue-type

compatibility and the spareness of the compatibility graph. Further, our approach to study

dynamic kidney exchange is combinatorial and is based on the structure of the underlying

random graph while Ünver [126] takes a dynamic programming approach.

Roth et al. [103] first proposed a way to organize kidney exchange integrating cycles

and chains. Logistical constraints required that cycles involve no more than 2 patient-donor

pairs. Subsequent work suggested that a modest expand of infrastructure, that is allowing

only slightly larger, 3- and 4-way exchanges would be efficient (Roth et al. [107], Ashlagi and

Roth [12]) in large static pools. These studies assume either implicitly or explicitly that no

tissue-type incompatibilities exist.

Awasthi and Sandholm [21] use online stochastic optimization methods to computa-

tionally study the allocation in kidney exchange using short cycles in a dynamic setting.

Dickerson et al. [43] conduct computational simulations in the dynamic settings to under-

stand the benefit of chains. Dickerson et al. [44] study dynamic optimization and propose an

algorithm that assigns weights to different matches using future stochastic sampling. These

studies use however dense compatibility graphs (they generate graphs according to Saidman

et al. [111] which have been shown in Ashlagi et al. [14] to be very dense as opposed to

clinical data). Further, [49] use a novel random walk approach to study the effectiveness of

chains in a static random graph with hard and easy-to-match agents.

In a related line of work, Zenios [133] studied a dynamic kidney allocation model where

both direct (2-way) and indirect kidney exchange are allowed. 5 The objective is to study

the tradeoff between the (lower) quality of a deceased donor (that is assumed to be available

immediately) and the cost of waiting for a direct exchange. The exchange model studied in

this work ignores the tissue-type compatibility.

Another line of work in kidney exchange studies matching in the presence of failure. Many

5In an indirect exchange, the donor gives a kidney to the highest priority patient in deceased donor
waiting list, and her intended patient gets the highest priority in the waiting list.
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of the match offers given by the exchange programs fail to proceed to actual transplant for

various logistical and medical reasons. A few recent papers study kidney exchange with

failures, [31, 48, 88]. They use a probabilistic model for failure and assume that each com-

patible match is only viable with a given probability. They design algorithms to maximize

the expected number of successful matches in static settings. Further, [48] computationally

study this problem in a dynamic setting using dense graph models.

The problem of online matching (equivalent to our online scenario with only two-ways)

arises naturally in information technology applications such as online advertising in which

advertisements need to be assigned instantly to queries searched or webpages viewed by users.

The study of online matching was initiated by Karp et al. [72], in which they analyze the

problem in adversarial settings with no probabilistic information about the graph. Several

follow up papers, studied the problem in settings that limit the power of the adversary. Goel

and Mehta [61] studied the model in which the underlying graph has unknown distribution.

Feldman et al. [54] noticed that in applications such as online advertising there is information

about the graph structure, and they analyzed a model where the graph distribution belongs

to a certain class. Jaillet and Lu [67], Manshadi et al. [81] studied the same problem with

a general known distribution. Note that here we focus on one special class of distributions;

however, unlike the computer science literature, we consider various regimes of waiting (and

not just the online scenario).

Mendelson [86] analyzed the behavior of a clearinghouse in a dynamic market with prices

in which sellers and buyers arrive over time according to a given stochastic process. Similar

to our work, he considers a mechanism in which the clearing prices are computed periodically,

and he studies the market behavior for different time (period) scales.

Since the first version of this work, a few other papers followed up this line of work.

[4] and [9] studied dynamic barter exchange in a homogenous model where each 2 pairs

are compatible with each other independently with a very small probability. Similar to our

work, both of these papers are concerned with the impact of waiting before matching on the

performance of the market. [4] only study 2-way matching. It explicitly models departures
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and focuses on loss rate as the measure of performance. They show that if the clearinghouse

has information about when a pair departs then matching without waiting is suboptimal.

However if pairs depart probabilistically (similar to our model) then greedy is almost optimal.

[9] study 2-way, 3-way matching as well as chains. In their model, pairs never leave before

getting matched. Therefore they use the average waiting as a measure of performance of a

policy. 6 They show that in all of their settings the greedy policy (that matches without

any waiting) is almost optimal.

Main differences between our work and theirs is that (i) we consider a heterogenous

model which seems to be closer to the clinical data for kidney exchange (ii) we study both

2-way and 3-way matching, and we show that there is a fundamental difference between the

impact of waiting in 2-way and 3-way matching. This difference crucially stems from having

heterogeneity in level of compatibilities. We note our finding for 2-way matching is consistent

with both papers. However, our finding for 3-way is different from that of [9], essentially

because of having two types instead of one. (iii) We carry out an extensive simulation study

using clinical data to validate our theory, and further study dynamic policies in more general

settings.

4.2 Empirical findings

In this section, analyze a historical data from a major kidney exchange programs in the U.S.:

National Kidney Registry (NKR). These findings will form the basis of modeling assumptions

we make later in our theoretical and simulation study. From 01/01/2012 to 07/01/2014, 1162

incompatible patient-donor pairs joined NKR. This corresponds to an average arrival rate

of 1.28 pairs per day. The objective of this section is to analyze the heterogeneity of agents

in a Kidney Exchange system, and construct a data-driven model for Kidney exchange and

derive properties of efficient matching mechanisms.

6However, they argue that in a model with departure reducing the wait time is aligned with reducing the
loss rate.
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Arrivals

Ünver [126] shows that because of blood-type compatibility issues, some pairs are on the

“long” side of the market and it is therefore not possible to match all of them. They corre-

spond to pairs where the donor is blood-type incompatible with the patient, and they are

called under-demanded pairs. In this paper, we will not consider blood-type related compat-

ibility structure. Therefore, most of our results in this chapter apply to the subset of the

market that contains the self-demanded and over-demanded pairs where the donor is blood-

type compatible with its intended recipient. Table 4.1 gives a summary of the blood-types

of patient-donor pairs.

Patient \Donor O A B AB
O 19.2% 27.0% 10.8% 1.9%
A 7.7% 9.3% 4.8% 1.7%
B 4.0% 7.1 2.5% 1.2%
AB 0.6% 1.2% 0.3% 0.6%

Table 4.1: Blood-type statistics of pairs in NKR historic data. The under-demanded pairs
are shown in bold.

Figure 4-2 shows how the difficulty to find a match relates to the pair PRA.

We remark that this PRA distribution is different from what we would see in the general

population, because the pairs joining the pool are not uniformly random samples of the

population. As we can see from Table 4.1, 529 blood-type compatible pairs join the pool.

Most of these pairs are very likely to have highly sensitized patients 7 . Another reason that

accounts for this biased sampling is the incentives of the hospitals to withhold their easy

to match patients, so that they can match them internally, and to only enter their hard

to match patients into the exchange program (see Ashlagi and Roth [13] for more details).

Because this paper focuses on sensitization, in all the data analysis that follows, we consider

only the 667 pairs that are not under-demanded.

Departing from the classical one-type model in the Kidney exchange litterature is a
7Think of all the pairs with O-patient and O-donor, those that join the pool are tissue-type incompatible,

therefore more likely to be highly sensitized.

73



0 - 10 10 - 20 20 - 30 30 - 40 40 - 50 50 - 60 60 - 70 70 - 80 80 - 90 90 - 100

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P
ro

ba
bi

lit
y 

of
 a

n 
in

go
in

g 
ed

ge

Sheet 25

Figure 4-2: Probability of receiving an ingoing edge from a random pair in the system (i.e.
ratio of total incoming edges to total number of pairs) as a function of the PRA. Each dot
corresponds to a pair, the probability is computed as the ratio of the number of ingoing edges
by the total number of pairs in the system. The dark grey region of each box corresponds to
the region between the first and second quartiles, the light grey corresponds to the second to
third quartiles. The whiskers correspond to the pairs that are higher than the third quartile,
and less than 1.5 times the interquartile range.The median probability for 𝐻 pairs is around
1.8%, while the median probability for 𝐿 pairs is around 33%.

significant step towards understanding better why some agents get matched and why some

agents don’t. In Appendix A.1 we compare the empirical distribution of edges and cycles to

distribution obtained under a homogeneous and a 2-type Erdös-Renyi random graph.

Departures

Next, we focus on the departures. If a pair receives a match, it will leave the pool. The

data shows, however, that many pairs depart without being matched. Among the 667 pairs

included in our study 209 left the pool unmatched (124 were still waiting in the pool as of

07/01/2014, and 334 were matched). There could be a few reasons for such departures: the

pair finds a match in another pool or from a deceased donor; the patient becomes too sick to

transplant; the donor becomes unavailable. Abstracting away from the reasons for departure,

in the following, we propose a probabilistic model for departures. 8 First in Figure 4-3 we

8We do not have full information on the departure reason.
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illustrate the positive correlation between the PRA and average length of stay in the pool.

Note that for patients with PRA of between 90 and 100, the median is 322 days, whereas

for patients with a PRA between 0 and 10, the median stay is 7 days.
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Figure 4-3: Left: Length of stay for non-transplanted patients as a function of their PRA.
The box corresponds to the first and last quartile. The separation between dark and light
gray is the median. Right: The Match Probability is calculated as 1−𝑃𝑅𝐴. it represents the
probability to match with a blood-type compatible donor chosen at random. The Departure
Rate is computed as the inverse of the average stay of all pairs of a given match probability.
The regressions give an 𝑅2 of 78%.

In Figure 4-3, the right plot shows that there is an (almost) linear relationship between

the departure rate and the match probability. We observe that pairs with higher PRA and

under-demanded pairs stay in the pool much longer than non under-demanded pairs with

low PRA. Despite their significantly higher waiting time, a large number of high PRA pairs

leave the pool unmatched. The data shows that 47% of low PRA pairs get a match while

only 27% of high PRA pairs are able to get a match. Given the bimodal distribution of PRAs

and the biais introduced by under-demanded pairs, we partition the pairs into 2 groups of

𝐻 (high PRA) and 𝐿 (low PRA) pairs, and fit 2 separate exponential distributions to the

length of stay of pairs that left the pool unmatched. 9

Figure 4-4 shows that the distribution of the length of stay for 𝐻 and 𝐿 agents condi-
9We elected to leave out the pairs that obtained a match in order to make this departure estimation

independent of the matching process. This is a conservative estimation of the departure rate: being matched
is likely to positively correlate with the ability to wait longer.
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Figure 4-4: Empirical CDF for the length of stay of unmatched agents for H (blue) and L
(red) pairs respectively, and the corresponding exponential best fits.

tional on not being matched can be estimated fairly well by an exponential distribution with

respective means 206 and 80. The Lilliefors tests for goodness of fit are 0.027 and 0.038

respectively. Converting this into a discrete-time model of departures, we model the depar-

ture as follows: every iteration, a pair 𝐻 (𝐿) leaves the pool independently with probability

𝑞𝐻 ≈ 1
1.28*206 ≈ 0.0038 (𝑞𝐿 ≈ 1

1.28*80 ≈ 0.0098), where we normalized to bring arrival rates to

1 per iteration Note that this implies that the length of stay of each pair 𝐻 (𝐿) in the pool

follows a Geometric distribution.

Compatibility Graph

At any time, the set of incompatible pairs in the pool, 𝑉 , induces a compatibility graph

where a directed edge from 𝑣1 to 𝑣2 exists if and only if the donor of pair 𝑣1 is compatible

with the patient of pair 𝑣2.10 For each pair, we count the incoming edges in the following

way: consider node 𝑣2 that enters the pool at time 𝑇1 and leaves at time 𝑇2, for any pair 𝑣1

that is present in the pool at some time between 𝑇1 and 𝑇2 and forms an edge to 𝑣2, we count

(𝑣1, 𝑣2) as an incoming edge. 11 The number of such incoming edges gives an upper-bound

10In practice a minority of patients enroll with multiple donors. One can extend the model appropriately
to capture this multiplicity.

11Note that we do not require 𝑣1 to be in the pool during the whole horizon that 𝑣2 stays.
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on the matching opportunities that node 𝑣2 had.

Figures 4-5 and 4-6 show the incoming degree distribution of 𝐻 and 𝐿 pairs that left

the pool unmatched. We make the following crucial observation: Even though 𝐻 pairs

stay in the pool much longer, they still have significantly less incoming edges (or

equivalently matching opportunities) than 𝐿 pairs.

We observe that this incoming degree distribution has two components: a Binomial

component corresponding to the incoming edges that form upon arrival, and a Geometric

component corresponding to the edges that form from subsequent arrivals. For 𝐿 pairs, the

Binomial component dominates, in part due to their short stay in the pool. For 𝐻 pairs

however, the Geometric component dominates.
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Figure 4-5: Distribution of the total number of ingoing edges an H agent observes during her
lifetime in the system (both from pairs that were waiting upon its arrival, and from pairs
that joined the pool subsequently). Left figure shows total histogram, right figure is the
zoomed-in on the agents who see less than 20 edges during their stay in the system.

This raises the following question: Given the dynamics of kidney exchange pools, how can

we improve the likelihood that a high-PRA patient gets matched? In the rest of the paper, we

develop a dynamic model of kidney exchange that incorporate our key empirical findings, and

we use theoretical analysis as well as data-driven simulation to compare different matching

policies that determine when to match and how to prioritize.

In kidney exchange, matches are formed through both 𝑘-way cycles and chains (a chain

is a directed path starting from an altruistic donor.). In this paper, we will focus on short

cycles. 12. Any improvement on policy for matching through cycles is complementary to the
12In practice, cycles of size either 2 or 3 are considered due to logistic reasons.
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Figure 4-6: Distribution of the total number of ingoing edges an L agent sees during her
lifetime in the system.

benefit of chains. Further, success of chains crucially depends on the existence of altruistic

donors.

4.3 A data-driven model of kidney exchange

4.3.1 A dynamic model for kidney exchange

Motivated by our empirical findings, in this section, we present a stylized model that we will

use in our theoretical study. Our model makes a few simplifying assumptions needed for

tractability of analysis. However in our numerical study, presented In Section 4.5, we will

closely follow all the empirical observation made in the previous section.

We study a discrete-time infinite-horizon model for dynamic kidney exchange that works

as follows: At every time-step 𝑡 = 1, 2, . . ., one patient/donor incompatible pair arrives at

the pool. Each pair corresponds to a node in the graph. Each node is one of two types,

𝐻 (hard-to-match) or 𝐸 (easy-to-match) thus modeling our bimodal PRA distribution. An

arriving node is of type H independently and with probability 0 ≤ 𝜌 ≤ 1.

If the arriving node is of type 𝐻, it will obtain an incoming directed edge from any of

the existing 𝐸 nodes independently with probability 𝑝𝐻 . However, it does not receive any

incoming edges from another 𝐻 node. In other words, 𝐻 nodes cannot give to each other.
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On the other hand, if the arriving node is of type 𝐸, it will form an incoming directed edge

with any of the existing 𝐻 (𝐸) nodes independently with probability 𝑝𝐸 (1). The outgoing

edges are formed similarly. As data suggest (Figure 4-2) we will study the behaviour of the

system in the limit when 𝑝𝐻 → 0, while 𝑝𝐸 stays constant.

We will study matching using cycles. A 𝑘-way allocation or a 𝑘-way matching is a set

of disjoint cycles each of size at most 𝑘. We focus on 𝑘 = 2 and 𝑘 = 3. 13 Based on the

edge probabilities defined above possible 2-way cycles are 𝐻 − 𝐸 and 𝐿 − 𝐿, and possible

3-way cycles are 𝐻 −𝐸−𝐸 and 𝐸−𝐸−𝐸. Figure 4-7 summarizes the edge formation and

possible cycles.

Given that nodes depart continually, one natural policy is to try to find matchings every

time a new pair arrives. However, one might also argue that by making pairs wait for a

short period of time, we may increase matching opportunities especially for 𝐻 pairs without

increasing the departures. Our main theoretical result compares the performance of myopic

(no-wait) policy to that of a policy that matches less frequently. In particular we focus on

the following two policies:

Greedy: at every time step, finds a 𝑘-way allocation breaking ties in the following way:

(i) A 2-way cycle 𝐻 − 𝐸 has the highest priority.

(ii) If 𝑘 = 3, then 𝐻 − 𝐸 − 𝐸 has the second highest priority (if 𝑘 = 2 skip this).

(iii) Finally an 𝐿 − 𝐿 cycle has the least priority. Note by the greedy nature of this

policy, nodes remaining in the pool (after the matching decision is made) do not

form any cycles among themselves.

𝑏-Batching: at time steps 𝑏, 2𝑏, . . .:

(i) Find the maximum number of 𝐻 − 𝐸 2-way cycles, and remove them.

(ii) If 𝑘 = 3, then find the maximum number of 𝐻 − 𝐸 − 𝐸, and remove them. (if

𝑘 = 2 skip this).
13As mentioned before, in practice, cycles of size at most 3 are considered due to incentive and logistic

reasons.
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(iii) Match the remaining 𝐸 nodes using 𝐿 − 𝐿 or 𝐸 − 𝐸 − 𝐸 (if 𝑘 = 3). Again,

nodes remaining in the pool (after the matching decision is made) do not form

any cycles among themselves.

The two policies are summarized in Algorithm 1.

Algorithm 1 𝑘-way 𝑏-Batching (𝑏 = 1: Greedy)
For 𝑡 = 𝑏, 2𝑏, . . .:
1: Find maximum number of 𝐻−𝐸 2-way cycles, breaking ties randomly; remove matched

nodes.
2: If 𝑘 = 3, find maximum number of 𝐻 − 𝐸 − 𝐸 cycles, breaking ties randomly; remove

matched nodes.
3: Match the remaining 𝐸 nodes using 𝐸 − 𝐸 or 𝐸 − 𝐸 − 𝐸 (if 𝑘 = 3), breaking ties

randomly; remove matched nodes.
End for

Note that in both policies, there can be at most one 𝐸 node left unmatched after looking

for cycles. Following the rules defined above, it is easy to verify that greedy policy is equiv-

alent to 𝑏-batching with 𝑏 = 1. To distinguish these two policies, in the rest of the paper we

assume 𝑏 > 1.

Next we present our simplified model of departures: we assume nodes only depart at the

beginning of time steps 𝑏 + 1, 2𝑏 + 1, . . . (or the beginning of a batch). At time 𝜏𝑏 + 1, if

the node that arrived at time 𝑡 ≤ 𝜏𝑏 is of type 𝐻 and is still in the pool, it departs with

probability 𝑏𝑞𝐻 . However, if such a node is of type 𝐸, it will depart with probability 1. 14

Finally motivated by Figure 4-3, we assume 𝑞𝐻 = 𝛼𝑝𝐻 where 𝛼 < 1. The sequence of events

is assumed to be the following: at each time step 𝑡:

1. Departure: if 𝑡 = 𝜏𝑏+ 1 for some integer 𝜏 , then departing nodes are removed.

2. Arrival: A pair arrives.

3. Matching: In greedy policy the match is decided at the end of every time step 𝑡. In

batching-𝑏 a match is decided only if 𝑡 = 𝜏𝑏.
14This is not a restrictive assumption in our model because for both of the policies defined above, at the

end of a batch, we can have at most one 𝐸 vertex left.
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See section 4.4.1 for a more in-depth discussion of our modeling assumptions.
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𝐿

Figure 4-7: Left: Directed edge formation; Right: Possible matching cycles

4.3.2 Preliminaries

We denote the number of 𝐻 nodes at the beginning of the 𝜏 -th batch as Π𝑏
𝜏 and Π𝐺

𝜏 for the

𝑏-batching and the greedy policy respectively. Dynamics described above imply that Π𝑏
𝜏 and

Π𝐺
𝜏 are both Markov chains: arrivals are i.i.d; departures follow a memoryless distribution.

Further, at the beginning of a batch the pool consist of Π𝜏 𝐻 nodes and at most one 𝐸 node

which will immediately depart. Also, excluding that possible 𝐸 node, all the nodes in the

pool have in-degree/out-degree of zero, and all the future edge formations are also i.i.d and

independent of the index of a node. Because 𝑏 is fixed number, The Makrov chains Π𝑏
𝜏 and

Π𝐺
𝜏 have negative drifts when Π𝑏

𝜏 and Π𝐺
𝜏 become “too large”: in expectation, 𝑏𝑞𝐻Π𝜏 pairs

leave the pool at the beginning of the batch. This property ensures that the chain reaches

steady state:

Proposition 1. Makov chains Π𝑏
𝜏 and Π𝐺

𝜏 reach steady state.

Let E
[︀
Π𝑏

∞
]︀

and E
[︀
Π𝐺

∞
]︀

be the expected number of 𝐻 nodes in steady-state. Further,

let 𝜇𝑏
𝑘(𝜏) and 𝜇𝐺

𝑘 (𝜏) denote the number of 𝐻 nodes matched during the 𝜏 -th batch when

only cycles of length up to 𝑘 (𝑘 ∈ {2, 3}) are allowed. With a slight abuse of notation, we

will denote by E
[︀
𝜇𝑏
𝑘(∞)

]︀
and E

[︀
𝜇𝐺
𝑘 (∞)

]︀
the expected number of 𝐻 nodes matched in one

batch in steady-state. Balancing the arrival and departure in steady-state, implies that: 15

15Note the pool size also depends on 𝑘, but to keep the notation simple, we use Π𝑏
𝜏 (Π𝐺

𝜏 ) regardless of
value of 𝑘.
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𝑏𝜌 = E
[︀
𝜇𝑏
𝑘(∞)

]︀
+ 𝑏𝑞𝐻E

[︀
Π𝑏

∞
]︀

𝑏𝜌 = E
[︀
𝜇𝐺
𝑘 (∞)

]︀
+ 𝑏𝑞𝐻E

[︀
Π𝐺

∞
]︀

(4.1)

The immediate implication of (4.1) is that E
[︀
Π𝑏

∞
]︀
≤ 𝜌/𝑞𝐻 and E

[︀
Π𝐺

∞
]︀
≤ 𝜌/𝑞𝐻 . Later

in Lemma 10 we prove that the same upper-bound holds “with high probability” for Π𝑏
𝜏 and

Π𝐺
𝜏 . Further, in Lemmas 11 and 12 we show a lower-bound on both Π𝑏

𝜏 and Π𝐺
𝜏 of the form

𝑙𝜌/𝑞𝐻 for a constant 𝑙 ∈ (0, 0.5) . These bounds show that the expected size of the pool is

controlled by 𝑞𝐻 (or equivalently 𝑝𝐻). The smaller 𝑝𝐻 is, the larger the pool becomes.

Before proceeding with our analysis, we compute the in-degree distribution of the two

types to ensure our model follows the trends we see in data. For a moment suppose we do

not batch the departures together. Suppose each 𝐻 node departs at the beginning of each

step with probability 𝑞𝐻 . Consider an 𝐻 node 𝑣 that departs from the pool unmatched. The

number of incoming edges that node 𝑣 forms after arrival is Geometric variable with mean
(1−𝜌)𝑝𝐻(1−𝑞𝐻)+𝑞𝐻

𝑞𝐻
= (1−𝛼𝑝𝐻)+𝛼

𝛼
16: this follows form the the thinning property of the Geometric

distribution.

Now let us compute the number of incoming edges that node 𝑣 sees upon arrival. If the

greedy policy is being exercised upon arrival of 𝑣, then at most one 𝐸 node is in the pool.

Therefore node 𝑣 will form one edge at most with probability 𝑝𝐻 . If 𝑏-batching is being used,

there can be at most 𝐵 ∼ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑏, (1−𝜌)) 𝐸 nodes in the pool, therefore node 𝑣 forms at

most 𝑌 ∼ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝐵, 𝑝𝐻) incoming edges which is still assymptotically small in 𝑝𝐻 when 𝑏

is a constant. This highlights the following point: for small values of 𝑏, 𝑏-Batching does not

have a significant impact in increasing in-degree of 𝐻 nodes. However, batching still can be

beneficial because it can lead to better matching decisions. In the next section we show that

when using only 2-ways such a gain remains limited and diminishes for 𝑝𝐻 small enough.

However, when we match also through 3-ways, 𝑏-batching leads to an increase in matching

rate that does not scale down with 𝑝𝐻 . Overall, putting the calculation for in-coming edges

upon arrival and during the stay, we see that even in the limit of 𝑝𝐻 → 0 the in-degree of 𝐻

16Recall that we assume 𝑞𝐻 = 𝛼𝑝𝐻 .
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nodes remains a small constant. This capture the sparsity of the exchange pools.

Finally, let us also study the in-degree of 𝐸 nodes. In steady-state, using the lower bound

above, with high probability, there are at least 𝑙𝜌/𝑞𝐻 𝐻 nodes present. Therefore, upon arrival

of an 𝐸 node, it receives at least 𝑙𝜌𝑝𝐸/𝑞𝐻 = 𝑙𝜌𝑝𝐸/𝛼𝑝𝐻 incoming edges Given that 𝑝𝐻 ≪ 𝑞𝐸, it

can already be seen that 𝐸 nodes form many more incoming edges even upon arrival.

4.4 Main theoretical results

In this section we present our theoretical analysis which focuses on comparing the greedy and

the 𝑏-batching policy. We will use the expected match rate of 𝐻 nodes in the steady-state

(i.e., E
[︀
𝜇𝑏
𝑘(∞)

]︀
and E

[︀
𝜇𝐺
𝑘 (∞)

]︀
)) as the measure of comparison.17 The larger the match

rate, the smaller the pool size.18 Further, it follows from the Little’s law that the larger the

match rate the smaller expected wait-time in the steady-state.

In our first theorem, we focus on 𝑘 = 2, and show that batching does not improve

significantly the number of matches over the greedy policy. More precisely, we show the gain

from 𝑏-batching scales at most linearly with 𝑝𝐻 . As we shall see in Theorem 2, this is not

the case when 3-way cycles are allowed.

Theorem 1. Suppose 𝑘 = 2, in steady-state we have:

E
[︀
𝜇𝑏
2(∞)

]︀
≤ E

[︀
𝜇𝐺
2 (∞)

]︀
+ 𝑝𝐻𝜆

where 𝜆 = (1− 𝜌)𝑝𝐸𝑏2 [𝜌/2 + (1− 𝑏𝑞𝐻)𝑝𝐸𝜌/𝛼 + 𝑝𝐻𝑝𝐸𝑏− 𝑝𝐻𝑝𝐸(1− 𝜌)2𝑏+ 2].

Remark 1. In the limit 𝑝𝐻 → 0, 𝜆→ (1− 𝜌)𝑝𝐸𝑏2 [𝜌/2 + 𝑝𝐸𝜌/𝛼 + 2], and therefore, 𝑝𝐻𝜆→

0.

The detailed proof of this theorem is presented in Appendix A.2. Here we only describe

the high level ideas of the proof.
17As (4.1) shows, larger match rate is equivalent to the smaller loss rate: the expected loss is proportional

to the expected number of 𝐻 nodes in pool.
18Note that we use “pool size” and number of 𝐻 nodes in the pool interchangeably .
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Proof idea of Theorem 1. In the proof, we focus on analyzing the pool sizes associated

with the the policies (i.e., Π𝑏
𝜏 and Π𝐺

𝜏 ). Then we use (4.1) that relates the pool size with

the match rate. In order to prove the result, we show in steady-state E
[︀
Π𝐺

∞
]︀

is not “much

larger” than E
[︀
Π𝑏

∞
]︀
.

We show that for the same pool size, the gain of applying the 𝑏-batching instead of greedy

at any step is asymptotically small in 𝑝𝐻 ; This implies that the gap between Π𝑏
𝜏 and Π𝐺

𝜏

remains “small”. The intuition behind the proof is as follows: after a new batch arrives, let us

look at the undirected graph formed between the new batch and all the 𝐻 nodes in the pool

at the beginning of the batch (remember that all the nodes in the pool are isolated, meaning

have in-degree/out-degree zero). Excluding the 𝐸-𝐸 edges, this graph is is extremely sparse

and disconnected (See Figure 4-8). The maximum matching in a disconnected graph is the

union of the maximum matching of each of its connected components, and for each of these

components, 𝑏-batching cannot do any better than greedy. For instance consider the example

of Figure 4-8; when 𝑟1 arrives, it forms its three undirected edges. Most likely, nodes 𝑐1, 𝑐2,

and 𝑐3 will not have any other neighbors in this batch (the filled nodes in Figure 4-8), and

thus the decision of greedy and 𝑏-batching would be equivalent. In the proof we formalize

this intuition by upper-bounding the size of the augmenting path to the matching obtained

the greedy policy. The rest of the proof deals with analyzing the evolution of the gap between

the two pool sizes.

𝑟1

𝑐2 𝑐3𝑐1

Figure 4-8: The typical connected components (excluding the E-E edges) in the 𝑏-batching;
the circle nodes are of type 𝐸 and the rectangle ones are of type 𝐻; the filled nodes are
the ones which arrived in the last batch, and the not-filled nodes are those which arrived
previously and have not left the pool yet.
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Next, we study the case where cycles of length 3 are alllowed, and compare the matching

rates of the 𝑏-batching and greedy in steady-state (i.e., E
[︀
𝜇𝑏
3(∞)

]︀
and E

[︀
𝜇𝐺
3 (∞)

]︀
). In

particular, we state the counterpart of the above theorem when 3-way cycles are allowed,

and show that unlike the 2-way matching (where waiting is not effective), there are some

cases (depending on 𝑝𝐻 , 𝑝𝐸, 𝜌 and 𝛼) where 𝑏-batching can match many more 𝐻 nodes than

greedy does, and the gain of batching does not scales down with 𝑝𝐻 .

Theorem 2. Suppose 𝑘 = 3, 𝜖 = max
{︁√︁

6𝑞𝐻
0.5𝜌

,
√︁

4𝑞𝐻 [1+(1−𝜌)/𝛼]
0.5𝜌(1−𝑝𝐻𝑝𝐸)

}︁
, and parameters 𝜌, 𝑝𝐻 , 𝑞𝐻 ,

and 𝑝𝐸 are such that 𝜖 < 1. In steady-state we have:

E
[︀
𝜇𝑏
3(∞)

]︀
≥ E

[︀
𝜇𝐺
3 (∞)

]︀
− 𝛾𝑝𝐻 + 𝛾𝑝2𝐸

where 𝛾 = 2𝑏2(1−𝜌)(1−𝑏𝑞𝐻)
1+(1−𝜌)(1−𝑏𝑞𝐻)/𝛼

and

𝛾 =
1
2
(1−𝑏𝑞𝐻)2(1−𝑝𝐻𝑝𝐸)2𝜌𝑏(1−𝑝𝐻)2𝜌𝑏

(︁
1−𝑝𝐸

2(1−𝑝𝐻 )

)︁2
(0.72𝜉)2

1+(1−𝜌)(1−𝑏𝑞𝐻)/𝛼
.

for 𝜉 the solution of min
𝑥∈[2(1−𝜖)

0.5(1−𝑝𝐻𝑝𝐸)
1+(1−𝜌)/𝛼

𝜌/𝛼,2(1+𝜖)𝜌/𝛼]
𝑥𝑒−𝑥.

Remark 2. In the limit 𝑝𝐻 → 0,

(a) If 𝜌 > 0 then 𝜖→ 0.

(b) 𝛾 → 2𝑍2(1−𝜌)
1+(1−𝜌)/𝛼

, therefore 𝛾𝑝𝐻 → 0.

(c) 𝛾 →
1
2(

1−𝑝𝐸
2 )

2
[︂
0.72min

𝑥∈[2 0.5
1+(1−𝜌)/𝛼

𝜌/𝛼,2𝜌/𝛼]
𝑥𝑒−𝑥

]︂2
1+(1−𝜌)/𝛼

, therefore

𝛾𝑝2𝐸 →
1
2

(︀
1−𝑝𝐸

2

)︀2 [︁
0.72min𝑥∈[2 0.5

1+(1−𝜌)/𝛼
𝜌/𝛼,2𝜌/𝛼] 𝑥𝑒

−𝑥
]︁2
𝑝2𝐸

1 + (1− 𝜌)/𝛼
.

The detailed proof of this theorem is presented in Appendix A.3. Here we only outline

some of the proof ideas.

Proof idea of Theorem 2. Similar to the proof of Theorem 1, we focus on analyzing the

pool sizes associated with the the policies (i.e., Π𝑏
𝜏 and Π𝐺

𝜏 ). Then we use (4.1) that relates
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the pool size with the match rate. Here we show in steady-state E
[︀
Π𝐺

∞
]︀

is “significantly

larger” than E
[︀
Π𝑏

∞
]︀
. The gap stems from the following observation: during the arrival of

a batch, it can happen that an arriving 𝐸 node 𝑣 forms a directed edge to an (existing)

H-node 𝑢, but does not receive back an edge from 𝑢. Under greedy policy, it is likely that

node 𝑣 forms an 𝐸 −𝐸 cycle immediately or shortly after its arrival, and leave. This would

be a missed opportunity for matching node 𝑢 which only sees a few edges in its entire stay

in the pool. On the other hand, 𝑏-batching is likely to make a different decision: because it

waits until the end of the batch, with some probability it will find another 𝐸 node arriving

in the same batch to form an 𝐻−𝐸−𝐸 3-way which matches node 𝑢. Therefore, 𝑏-batching

matches more 𝐻 nodes by “wasting” fewer 𝐸 nodes, which makes the pool associated with

the greedy larger. A major part of the proof deals with finding a lower bound on the number

of such 𝐻 − 𝐸 − 𝐸 3-cycles that greedy “misses” but 𝑏-batching does not. What makes the

counting particularly challenging is the non-monotone relationship between the pool size and

probability of the aforementioned event: if the pool is larger, the chance of a directed edge

from 𝐸 to 𝐻 increases (which is the necessary part of forming the beneficial 𝐻 − 𝐸 − 𝐸

cycle), but at the same time the probability that the same 𝐸 node forms a 𝐻 − 𝐸 cycle

immediately also increases. These factors contribute into the rather cumbersome form of the

constant 𝛾.

The second part of the proof resolves the following dilemma: the pool associated with

greedy becomes larger over time due to the loss in matching as explained above; The match

size in each batch increases as the pool becomes larger. Can this increase in match size

(as a result of a larger pool) create a large enough drift to bring back the size of the pool

for greedy close to the one for 𝑏-batching? We show that in a pool with 𝑋 extra nodes,

the expected increase in match size only scales with 𝑝𝐻𝑋, and therefore for 𝑝𝐻 small, the

increase is “insignificant”. The factor −𝛾𝑝𝐻 in the theorem statement accounts for this drift

that goes in the opposite direction of the gain from batching.
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4.4.1 Discussion on model and theoretical results

The above theoretical results are founded on a few fundamental properties of the underlying

compatibility graph. These properties qualitatively hold beyond the simplified model we

used to keep the analysis intractable. Here we use the insight from our analysis to show how

the results will change if we relax some of the modeling assumptions.

One of the main simplifying assumptions we made was that nodes do not depart during

a batch. This is indeed a strong assumption that we need to make only because of another

strong (and unnecessary assumption) in 𝑏-batching policy which requires all pairs in the

arriving batch to wait until the end of the batch. As our analysis shows if at any time

we can match an 𝐻 node, there is no significant benefit from making this node wait (the

example in Figure 4-8 is one illustration of this insight). In fact, the only scenario for which

waiting helps is in 3-way matching when an 𝐸 node can give to an 𝐻, but cannot form a

cycle right away.

Therefore, in the model where nodes depart at every time-step, we can modify the 𝑏-

batching to an opportunistic 𝑏-batching policy which works as follows: if 𝑘 = 3, during the

batch we only make an 𝐸 node 𝑣 wait if 𝑣 forms an edge to at least one 𝐻 node (say node

𝑢) without forming any cycle involving an 𝐻 node. At any later time, if another 𝐸 node

arrives that does not form any 𝐻 −𝐸 cycle but forms a 3-way with 𝑢 and 𝑣, we will execute

the match right away. We let the rest of the nodes match immediately.19

Comparing the opportunistic 𝑏-batching with the greedy policy (under the relaxed as-

sumption that nodes depart every step), we expect the gain from making these special 𝐸

nodes wait to remain significant: following the lines of proof for Theorem 2, we do not use

the fact the nodes other than these special 𝐸 nodes also wait until the end of the batch.

Further, our data driven simulation study also confirms that, for 𝑘 = 3, such opportunistic

batching results in a significant increase in match rate of 𝐻 nodes compared to that of the

greedy policy (see Figure 4-11).20

19For 𝑘 = 2, Theorem 1 already shows there is not a significant benefit from waiting, so we will not use
𝑏-batching.

20A theoretical analysis of opportunistic 𝑏-batching is quite challenging because it would require us to
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Next we note that the results are stated in a way to highlight the dependency of each

gain/loss term on 𝑝𝐻 which is a very small number. As Remarks 1 and 2 illustrate, the

asymptotic case of 𝑝𝐻 → 0 offers the clearest dichotomy between the comparison for 2-way

matching (where the two policy will have the same matching rate) and 3-way matching

(where the 𝑏-batching has a non-vanishing gain). For a fixed value of 𝑝𝐻 , our comparison of

the match rates involve constants 𝜆, 𝛾, 𝛾. The combinatorial and stochastic nature of the

matching process makes it extremely difficult to optimize these constants or compute the

exact matching rates. However, we use data-driven simulation (presented in Section 4.5) to

confirm that our assertion based on our theoretical analysis also holds in settings driven by

real data.

Finally, assuming that 𝐸 nodes match each other with probability 1 allowed us to merely

focus on match rate for 𝐻 nodes which is indeed the main challenge in kidney exchange.

However, as discussed in Section 4.5, there is a tradeoff between matching 𝐻 nodes and 𝐸

nodes: when we make some 𝐸 nodes wait (to help the 𝐻 ones), we increase the chance that

they leave the pool unmatched. This highlights the limit of batching policy in increasing the

total match rate (including both types).

4.5 Data-driven simulation results

In this section we provide simulations that implement the different matching policies that

we considered in Section 4.3. We use the compatibility graph obtained in the clinical data

from NKR. In addition, because compatibility can deterministically be determined using

antigens, antibody levels and blood-types, we were able to know whether two pairs that

may have never been in the NKR pool at the same time would have been compatible. We

simulated arrivals and departures according to the models derived in Section 4.2.

analyze a high dimensional Markov chain that not only keeps track of number of 𝐻 and 𝐸 nodes, but also
the existing edges among them.
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4.5.1 Simulation set-up

In order to model the departure process, we fit an exponential distribution on the length of

stay for agents that were not eventually matched. We controlled for hardness-to-match by

fitting the departure distribution independently for H and E pairs.

Because we do not theoretically model blood types, we removed U agents from our

simulations. This can be thought of as the matching process when we focus on the sub-pool

of blood-type compatible pairs. We show simulation results in a more general case in section

4.5.4.

In our simulation, we normalized the arrival rates to 1 per time step Therefore, we

normalized the departure rates to 𝑞𝐻 = 0.0038 and 𝑞𝐸 = 0.0097, as discussed in section 4.2.

At each iteration, we sample with replacement one pair from the pool of 1677 pairs that

arrived to the NKR between 01/2008 and 07/2013. 21

In order to provide a simple yet flexible framework, we implemented integer formulations

for the weighted matching problem in settings where either 2-cycles or both 2 and 3-cycles

are allowed. We then ran these formulations every 𝑏 iterations where 𝑏 is the batch size.

4.5.2 Implementation of our theoretical policies

Recall that there can be multiple reasons for a pair departing: it can obtain a match in a

competing exchange program, or get a kidney from the deceased waiting list, or the patient

can become too sick to become transplanted.

Fielded Kidney Exchange programs such as NKR have began implementing such priorities

in some cases: pediatric matches are given a higher priority for example, perfect matches 22

also get a higher priority. In Section 4.5.3 we consider the following policies:

- No-priority(𝑏): this is the policy where we solve a maximum-cardinality matching
21While it was important to consider only recent data to get a good estimate of the arrival and departure

rates, we chose to take all the pairs into account to increase diversity and limit the biais introduced by
sampling the same agents multiple times

22Perfect match occurs when the donor’s antigenes and the patient’s antibodies are perfectly compatible.
They reduce the likelihood of a positive crossmatch, and ultimately the benefit of the transplant to the
patient.
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problem, without prioritizing hard-to-match vertices. This means that all pair types

are treated the same and ties between two options that match the same number of

pairs are broken randomly.

- Batching(𝑏): this is the policy that is closest to our theoretical analysis. 𝐸 pairs are

given a weight of 2, and 𝐻 pairs are given a weight of 5. In the case of 𝑏 = 1, this

is the greedy policy, and there is never more than a single cycle matched at any time

step. This enables the following hierarchy of priorities: 𝐻 −𝐻 −𝐻 > 𝐻 −𝐻 − 𝐸 >

𝐻 −𝐻 > 𝐻 − 𝐸 − 𝐸 > 𝐻 − 𝐸 > 𝐸 − 𝐸.

We note that there are two potential issues with this prioritizing scheme. Firstly, even

though 𝐸−𝐸 has the lowest priority, it leads to a loss of 𝐸 pairs that could potentially help

future pairs match. Secondly, prioritizing 𝐻 − 𝐸 − 𝐸 over 𝐻 − 𝐸 can have similar results.

This leads us to define a new matching policy:

- Opportunistic Batching(Z): This policy reduces the loss of 𝐻 pairs due to batching

by matching them as soon as possible. It assigns a weight of −2 to 𝐸 pairs that have

been in the system less than 𝑏 iterations and have at least one edge that points to an

𝐻 agent in the system. 𝐸 pairs that have been in the system longer get a weight of

+1, and H pairs get a weight of 5. This prevents 𝐸 − 𝐸 matching for the first 𝑏 time

steps that they are in the system, but allows for 𝐸 − 𝐸 −𝐻 as well as 𝐸 −𝐻.

4.5.3 Results

In order to reach the steady-state distribution, we ran each simulation for 10,000 iterations,

and all the statistics that we show are averaged over iterations 2,000 through 10,000 (note

that transient state lasts around 500 iterations, depending on the matching policy employed).

Because there are still variations between runs, we ran 20 independent simulations for each

setting in order to make sure that our findings are statistically significant. In Figures 4-9

through 4-13, we plot the match rates obtained in all 20 runs, for the different pair types

(all, only 𝐻, only 𝐸, etc) for different settings. We also show box-plots: the region between
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the first quartile and the median is shown in dark grey, the region between the median and

the third quartile is shown in light grey. The whiskers extend to the closest point that is

distant from the box by at most 1.5 times the inter-quartile range.

No-priority

In this section, we consider the effects of batching under the no-priority policy, for batch

sizes varying between 1 and 50. In Figure 4-9 we observe that even though 𝐻 agents stay

almost three times longer in the system, their match rate is significantly lower than that of

the 𝐸 agents.

We also observe that as the batch size increases, the match rate for E pairs decreases,

while it increases for H pairs. This can be explained by the fact that 𝐻 agents have a

lower departure rate, and therefore batching them for a few time steps will not harm them

much. On the other hand, because of the batching mechanism, some 𝐻 agents are able to

match to 𝐸 pairs that would otherwise have matched together. While the overall match rate

decreases, this illustrates the fact that when matching 𝐻 agents is deemed more important

than matching 𝐸 agents, some level of batching may be useful.

Prioritizing

In this section, we analyze how the batching policy (which breaks ties in favor of 𝐻 agents)

performs. As shown in Figure 4-10, compared to the no-priority policy, batching increases

the median match rate of H pairs by 6 percentage points, while decreasing the median match

rate of E pairs by 8 percentage points. Overall, there is no significant difference in the total

match percentage. We notice that this improvement for 𝐻 pairs is much stronger than the

one observed when batching with the Greedy policy.

Furthermore, increasing the batch size does not seem to yield a significant improvement

for the prioritizing policy in terms of the number of 𝐻 pairs that are matched. There are

two competing forces here: on one side, increasing the batch size gives 𝐻 pairs more 𝐸 pairs

with whom to match. On the other side, the greater the batch size, the more likely it is that
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Figure 4-9: Comparison of match rates under the No-priority policy, for varying values
of the batch size (b = 1,2,5,10,20,50), when both 2 and 3-cycles are allowed. The left graph
shows the aggregate match rate of 𝐻 and 𝐸. The middle graph shows the match rate for H
pairs, and the right graph shows the match rate for E pairs.

an 𝐻 pair will depart when we could have found a match.

Prio
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Figure 4-10: Comparison of match rates for the Batching policy for batch sizes of between
1 and 50, when both 2 and 3-cycles are allowed. The left graph shows the aggregate match
rate, the middle graph shows the match rate for H pairs, and the right graph shows the
match rate for E pairs.
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Opportunistic Batching

One question we want to ask now is the following: can we improve 𝐻 pairs’ match rate

beyond what we get with prioritizing? To answer this, we look at our Opportunistic Batching

policy. Figure 4-11 shows that we can indeed slightly improve the median matching rate of

𝐻 agents from 49% to 51%. However, this reduces the median matching rate for 𝐸 pairs

by 7 percentage points, from 48% to only 41%. We leave it to the policy maker to decide

whether such a tradeoff is acceptable.
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Figure 4-11: Match rates for the Opportunistic batching policy, and batch sizes of 1,
20 and 50 when cycles of length 2 and 3 are allowed. Left graph is the overall match rate.
Middle graph is the match rate for H pairs, and Right graph is the match rate for E pairs.

4.5.4 Extensions

Sensitivity analysis on arrival and departure rates

We observed in Section 4.5.3 that batching has a limited effect in today’s NKR pool. An

interesting question is to determine whether this is an intrinsic property of the system, or

whether this is a consequence of the current arrival and departure rates. In other words,

what would happen if we were to increase the arrival rate of new pairs?23 In Figure 4-12 we
23Because we normalize arrivals, this is equivalent to decreasing the departure rates.
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observe match rates under the batching policy when we double the arrival rate (or we divide

the departure rate by two).
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Figure 4-12: Match rates for the Batching policy, when both 2 and 3-cycles are allowed,
in the case where the departure rates are divided by two: 𝑞𝐻 = 0.0019, 𝑞𝐸 = 0.0049. The
left graph shows the aggregate match rate, the middle graph shows the match rate for H
pairs, and the right graph shows the match rate for E pairs.

We observe that for an increased arrival rate, some level of batching leads to an increased

match rate for 𝐻 pairs, and has a limited effect on 𝐸 pairs. We note that here, the batch

size is measured in terms of the number of arrivals between match runs. In practice however,

matches are run periodically (daily or weekly) irrespective of the number of arrivals in the

interval. The optimal level of batching and how does it relate to the arrival and departure

rates is an interesting open question.

Under-demanded pairs

In this section, we show simulations that go beyond the settings of our theoretical analysis.

In particular, we observe what happens to the matching policies that we analyzed in settings

with under-demanded agents. In addition to our previous two types 𝐻 and 𝐸, we now

introduce the 𝑈 pairs, which correspond to pairs with under-demanded blood-types and low

PRA (≤ 80).
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First we introduce under-demanded agents to our simulations. This means that our

arrivals are now sampled uniformly from the data in the NKR pool. We compute the

estimated departure rates based on the average stay in the system for each type of pair:

𝑞𝐻 ≈ 1
1,28*206 ≈ 0.0038, 𝑞𝐸 ≈ 1

1.28*80 ≈ 0.0097, and 𝑞𝑈 ≈ 1
1.28*177 ≈ 0.0044.

In Figure 4-13, we show how match rates vary, both for the greedy and the prioritiz-

ing policy, as a function of the batch size. We observe that similarly to the case without

any under-demanded pair, batching only helps 𝐻 pairs when there are no priorities, and

prioritizing helps 𝐻 agents more than batching.

However, we also see in Figure 4-13 that prioritizing for 𝐻 pairs sharply decreases the

match rate for 𝑈 pairs. Somewhat surprisingly, batching using the greedy policy also seems

to increase the match rate for 𝑈 pairs. One explanation for this is that as the batch size

increases, there are less 𝐸 −𝐸 matches which negatively impacts the match rate for under-

demanded pairs as well as 𝐻 pairs This would make it an interesting compromise between

helping 𝐻 agents and helping 𝑈 pairs.
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Figure 4-13: Comparison of match rates for greedy and prioritizing and varying batch sizes
(1 to 50). Top right: overall match rate, top left: match rate for 𝐻 pairs, bottom right :
match rate for 𝐸 pairs, bottom left: match rate for 𝑈 pairs..
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Chapter 5

On Matching and Thickness in

Heterogeneous Dynamic Markets
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5.1 Introduction

This paper is concerned with the problem of matching in a dynamic marketplace, where

heterogeneous agents arrive over time to the market looking to exchange an indivisible item

for another compatible item. A key feature of the market is its exogenous thickness, as

determined by the types of agents and their arrival rates to the marketplace. For example,

in kidney exchange some patient-donor pairs are very hard-to-match while others are very

easy-to-match. In online labor markets, employers have different qualification requirements

and workers have different skills.

Efficiency is determined by the matching policy and the matching technology. The former

determines which exchanges to be implemented and when, and in particular which priorities,

to assign to different types of agents. The latter determines the forms of matches that

can take place; For example, while kidney exchanges were first conducted through bilateral

exchanges (2-way cycles) [105], multi-hospital platforms are now facilitating many of their

transplants through chains initiated by altruistic donors [7]. In many matching markets,

such as dating, only bilateral matches take place.

We are interested in the behavior of simple myopic policies under different matching

technologies and different thickness levels of the market. Myopic policies form matches as

soon as they become available, but may vary with respect to how they prioritize agents in

the events of ties. Our framework will allow to discuss policy questions such as: What is the

effect of prioritizing different types of agents? How does disproportional change in arrival

of different types influence market efficiency? What is the impact of merging matching

marketplaces with different thickness levels on different types?

Two comments are in place. First, restricting attention to myopic policies is motivated

by current practices in kidney exchange platforms in the United States. Ashlagi et al. [17]

uses simulations based on empirical data from multiple exchange programs to show matching

myopically is nearly harmless. Moreover, a similar conclusion is also arrived in theoretical

work [8]. 1 While they consider a stylized model with homogeneous agents, their result can

1See Subsection 5.1.1 for further details.
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be generalized to our heterogeneous model.2

Second, the literature on dynamic matching in sparse environments has focused on homo-

geneous agents [4, 8]. The motivation for this paper stems from the heterogeneity of agents

in the marketplace.

For our purposes we propose a simple infinite-horizon model with two types of agents,

easy-to-match (𝐸) and hard-to-match (𝐻). Agents of each type 𝑇 arrive to the marketplace

according to an independent Poisson process with rate 𝜆𝑇 . Each agent arrives with an

indivisible item that she wishes to exchange. We assume a stochastic demand structure,

where each agent of type 𝑇 finds the item of any other agent compatible independently

with probability 𝑝𝑇 . A key feature of the model is that 𝑝𝐻 is significantly smaller than 𝑝𝐸.

Agents are indifferent between compatible items but prefer to be matched as early as possible.

Moreover, agents in our model depart the market after being matched. We therefore adopt

the average waiting time of agents in steady-state as a measure for efficiency.3 While our

model is highly stylized, it captures some important features observed in kidney exchange

pools (see Section 1.2.1, where we provide a brief background that further motivates this

study).

Two settings are considered, distinguished by how matchings are formed (feasible ex-

changes): bilateral (2-way cycles), and chains. Our main findings are the following. First,

we find that market thickness plays a crucial role on the desired matching technology; when

easy-to-match agents arrive more frequently to the market than hard-to-match ones, the

average waiting time of 𝐻 agents scales similarly under chains and bilateral matchings. But

there is a sharp increase in the average waiting time of 𝐻 agents as soon as hard-to-match

agents arrive more frequently, highlighting the importance of chains in marketplaces with

a majority of hard-to-match agents. Second, we find that, under bilateral matching, in-

creasing arrival rates of hard-to-match agents may negatively affect hard-to-match agents

by increasing their waiting times. Under chains, however, increasing arrival rates always

2This is not the focus of this paper, but for completeness, we show this in Appendix B.8.
3More precisely, we focus on the average waiting time of 𝐻 agents, because the waiting time of 𝐸 agents

is negligible compared to that of 𝐻 agents. For a more detailed discussion, see Section 5.2.

99



shortens waiting times. Third, impact of prioritization in bilateral matching also depends

on the market composition; when hard-to-match agents are the minority type, assigning

them priority improves their waiting times. 4 However, when they are in majority, such

prioritization has no significant impact.

Next we describe our results more formally under the bilateral and chain settings. In our

analysis we compute the average waiting time of 𝐻 agents under various myopic policies as

𝑝𝐻 → 0.

Bilateral matching. Two myopic policies are considered for bilateral matching, differing

in the type of agents they prioritize; While it appears natural to prioritize hard-to-match

agents, it is also interesting to consider the prioritization of easy-to-match agents as these

may have better outside options.5

We find that regardless of how agents are prioritized, when 𝜆𝐻 < 𝜆𝐸 waiting time scales

with 1/𝑝𝐻 , and when 𝜆𝐻 > 𝜆𝐸 waiting time scales with 1/𝑝2𝐻 . When easy-to-match agents

arrive more frequently, prioritizing 𝐻 agents results in shorter waiting times than prioritizing

𝐸 agents. However, when 𝜆𝐻 > 𝜆𝐸, the average waiting time in the limit is identical under

both types of priorities.

We further provide comparative statics for the case in which 𝐻 agents are prioritized.

Increasing 𝜆𝐸 always decreases waiting times. However, the average waiting time is non-

monotone when increasing 𝜆𝐻 ; It has an increasing trend up to a certain threshold, which

depends on 𝜆𝐸, and then it decreases (note that in a homogeneous model with only 𝐻 agents,

Little’s law implies that increasing 𝜆𝐻 always decreases waiting times). These findings have

two main implications: (i) thickening the market by increasing arrival rates of hard-to-match

agents can result in longer waiting times depending on the existing arrival rates, (ii) merging

two marketplaces with different compositions, i.e. different ratios between the two arrival

4To be precise, theoretically we are only able to prove that prioritizing 𝐻 agents leads to shorter or equal
waiting times (of 𝐻 agents), however, numerically we confirm that such prioritization indeed leads to strictly
shorter waiting times.

5 In reality, agents may leave the market without being matched due to various reasons such as finding
outside options. Under a stochastic departure model, shorter waiting times correspond to fewer departures
because both quantities are proportional with the market size. We leave the rigorous treatment of a model
with departure as an open question.
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rates, may not be beneficial for both.

Chain matching. Under the chain setting, we consider policies termed ChainMatch(d) for

markets endowed with 𝑑 altruistic donors who initiate chains that continue indefinitely. In a

chain, each agent is matched by (receives an item from) some agent, and matches another.

Whenever the last agent of a chain can match a new arriving agent, the policy forms a new

chain-segment, which is a maximal sequence of matches resulting from a local search, in

which the next matched agent is selected randomly while breaking ties in favor of 𝐻 agents

(so the policy does not always identify the longest possible chain-segment, which requires a

global search and may be computationally hard). We prove an upper-bound on the average

waiting time that scales with 1/𝑝𝐻 for all positive arrival rates. We also find that even in the

regime 𝜆𝐸 > 𝜆𝐻 where the waiting time scales similarly under both matching technologies,

chains result in lower waiting times than bilateral matching.

We provide comparative statics over the arrival rates of both types. We show (analytically

for 𝑝𝐸 = 1 and numerically for 𝑝𝐸 < 1), that the average waiting time decreases when

the arrival rate of either type increases. When 𝑝𝐸 = 1, we further find that the average

waiting time is independent of the constant 𝑑. Similar patterns hold numerically when

𝑝𝐸 < 1. Finally, we are able to compute the average chain-segment (which plays an important

operational role for example in kidney exchange). An increase in 𝜆𝐸 or 𝑑, decreases the

average length of a chain-segment. In contrast, increasing 𝜆𝐻 has the opposite effect.

Next we provide brief intuition for some of the main findings, beginning with why the

market composition and the desired matching technology are tightly connected. Under the

bilateral setting when easy-to-match agents arrive more frequently, almost all hard-to-match

agents will be matched with easy-to-match ones resulting in a scaling of 1/𝑝𝐻 ; on the other

hand, when hard-to-match agents arrive more frequently, many of them will have to match

with each other resulting in a scaling of 1/𝑝2𝐻 which is the inverse of the probability that two

𝐻 agents can match each other. In contrast, matching through chains does not require such

“coincidence of wants” between pairs of 𝐻 agents even when 𝐻 agents are the majority. This

results in a waiting time that scales with 1/𝑝𝐻 regardless of the composition. We further
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find that the heterogeneity in the marketplace may lead to non-trivial effects when increasing

participation;

The intuition for why, in the bilateral setting, 𝐻 agents may be harmed when attracting

more 𝐻 agents to the market is the following: When 𝜆𝐻 < 𝜆𝐸, increasing 𝜆𝐻 reduces the

chance that an existing 𝐻 agent will match with the next arriving 𝐸 agent. However, when

𝜆𝐻 > 𝜆𝐸, increasing 𝜆𝐻 implies on one hand that more 𝐻 agents must match with each

other, and on the other hand, it reduces the time to form 𝐻-𝐻 matches. The first effect is

initially stronger, but the second effect dominates once 𝜆𝐻 is sufficiently large.6

Understanding the impact of market composition by providing comparative statics re-

quires us to not only compute the scaling of asymptotic behavior of average waiting time

but also to characterize the exact limits. Such exact characterization in a heterogeneous

model is particularly challenging as we need to analyze 2-dimensional Markov chains. For

bilateral matching polices, we directly analyze the underlying 2-dimensional spatially non-

homogeneous random walks. One of the main challenges in our analysis is the need to jointly

bound the distribution in both dimensions, because applying methods such as Lyapunov

functions or analyzing marginal probability distributions would not result in tight bounds.

In doing so, we prove two auxiliary lemmas on concentration bounds for a general class of

2-dimensional random walks that can be of interest for studying similar random walks that

may arise in other applications. For chain policies, we first couple the underlying Markov

process with a 1-dimensional process where no 𝐸 agent joins the market. Analysis of the

resulting 1-dimensional Markov chain presents new challenges as transitions between non-

neighboring states happen due to the possibility of forming arbitrarily long chain-segments.

However, we show that the chain-segment formation process exhibits a memoryless property,

which proves helpful in computing the waiting time limits.

6A similar effect happens in kidney exchange where O-A patient-donor pairs that cannot match with each
other compete to match with scarce pairs with blood-type O donors. Note, however, that in our setting all
agents can potentially match with each other; in particular this effect extends to sets of pairs that are blood
type compatible with each other, like O-O pairs, some of which are much harder-to-match than others. We
elaborate and provide intuition for other results throughout the paper.
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5.1.1 Related work

A close stream of related papers study dynamic matching in models, in which agents’ prefer-

ences are based on compatibility, i.e, agents are indifferent between whom they match with

[4, 8, 126].

The impact of the matching technology is addressed in markets comprised of only easy-

to-match agents [126] (with multiple coarse types) or only hard-to-match ones [8]. Ünver

[126] finds that short cycles are sufficient for efficiency.7 Anderson et al. [8] consider markets,

in which all agents are ex ante symmetric and hard-to-match. They study the waiting-time

scaling behavior of myopic policies that attempt to match each agent upon arrival in three

settings of exchanges, 2-ways, 2 and 3-ways, and chains, and find that moving from 2-ways

or 3-ways to chains significantly reduces the average waiting time.8 Our paper bridges the

gap by looking at a model with both hard- and easy-to-match agents and thus allowing for

different levels of thickness in the market. 9

The papers above also find that, by and large, myopic policies are near-optimal: Ünver

[126] analyzes a kidney exchange model with different types and deterministic compatibility

structure across types and finds that matching upon arrival is near optimal, even though

some waiting with certain types to facilitate three-way exchanges adds some benefits. 10

Anderson et al. [8] consider a homogeneous model without departures (similar to our model

with 𝜆𝐸 = 0) and finds that there is little benefit from waiting before matching under

both matching technologies of short cycles and chains.11 Akbarpour et al. [4] consider a

homogeneous model with departures and finds that the optimality gap of the policy that

matches without waiting remains constant as the match probability decreases. Moreover,

using data-driven simulations, Ashlagi et al. [17] study the impact of match-run frequency,

7The findings by Ünver [126] thus provide a rationale for the static large market results (see, e.g. Roth
et al. [107]).

8See also Dickerson et al. [43] that demonstrate the benefit of chains using simulations in dynamic kidney
exchange pools.

9Ding et al. [49] study a similar two-type model in a static setting and quantifies the effectiveness of
matching through chains taking a novel random walk approach.

10See also [62], who study a similar compatibility-based inventory control model.
11The waiting-time scales with the same factor with or without waiting before matching.
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and show that among polices that match periodically (e.g., every week or every day), high

matching frequencies perform best. 12 This paper builds on these findings, and only analyzes

myopic policies that search for a match upon arrival of a new agent.

We elaborate on the relation to [8], which is closest to our paper. Studying myopic policies

under a homogeneous setting resulted valuable insights. Some insights, however, do not carry

over to heterogeneous settings like kidney exchange (See Subsection 1.2.1). For instance,

merging markets is often sought as a solution to improve efficiency. A homogeneous model

predicts that increasing arrival rates (or merging markets) will always decrease waiting times.

In contrast, we find that merging heterogeneous markets may not decrease waiting times for

both markets. The homogeneous model by Anderson et al. [8] predicts very infrequent

but very long chain-segments. Our model predicts shorter chain-segments, which fits better

empirical evidence (chain-segments typically consist of only a few pairs). Further, we remark

that some questions cannot be addressed in a homogeneous setting; for instance kidney

exchange programs attempt to attract easy-to-match pairs [12]; but the impact of such an

increase cannot be investigated in a homogeneous model. As another example, exchange

programs usually assign high priority to hard-to-match pairs; effect of such prioritization

cannot be studied in a homogeneous model. Overall it is natural and important to study

richer models in order to address relevant policy questions.

Another stream of related research considers models of agents’ preferences that do not

depend only on compatibility. These papers find that policies that match without waiting

are inefficient [22, 50, 58, 70] since some waiting can improve the quality of matches.13

Our work is also related to the problem of matching multi-class customers to multi-class

servers studied in queueing literature (e.g., Adan and Weiss [1], Caldentey et al. [34]).

In our model, an agent can be thought as a pair of customer-server, and the compatibility

between any two agents is probabilistic, thus we will not have a finite number of queues.

Finally our work is related to the online matching literature that study online matching

12Non-myopic policies have also been studied, for example Dickerson et al. [44] study forward-looking
polices by casting the dynamic matching problem as a high-dimensional dynamic program, and develop a
heuristic to overcome the curse of dimensionality.

13See also related results in queueing models [30, 76].
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in which the underlying graph is bipartite and agents on one side of the graph are all present

in the market and only agents on the other side arrive over time [54, 61, 67, 72, 81].

5.1.2 Organization

In Section 5.2 we introduce the model, polices, and the underlying stochastic processes. In

Subsection 1.2.1 we provide a brief background on kidney exchange further motivating our

framework and study. In Section 5.3 we present the main theoretical results and Section

5.4 complements the results with numerical experiments. Section 5.5 outlines the main

proof ideas and techniques along with the details of Markov chains induced by each policy.

Section 5.6 concludes. For the sake of brevity, we only include proofs of selected results

in the main text. The detailed proofs of the rest of the statements are deferred to clearly

marked appendices.

5.2 Model

We study an infinite-horizon dynamic matching market, where each arriving agent is endowed

with a single item she wants to exchange for another item she finds compatible. Agents are

indifferent between compatible items and wish to exchange as early as possible, their cost of

waiting being proportional to the waiting time.

There are two types of agents, 𝐻 and 𝐸, referred by hard-to-match and easy-to-match,

respectively. Beginning at time 𝑡 = 0, agents of type 𝑇 ∈ {𝐻,𝐸} arrive to the market

according to an independent Poisson process with rate 𝜆𝑇 > 0.

Any agent of type 𝐻 (𝐸) finds the item of any other agent compatible independently

with probability 𝑝𝐻 (𝑝𝐸). Our analysis is asymptotic in 𝑝𝐻 → 0, while 𝑝𝐸 is a fixed constant.

So, on average, an 𝐻 agent finds significantly fewer items compatible than an 𝐸 agent. We

say that an agent 𝑗 is matched by agent 𝑖, if agent 𝑗 receives agent 𝑖’s item. An agent leaves

the market only when she is matched, i.e., she receives a compatible item.

We study matching policies in two different settings, distinguished by how agents can
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exchange items. In the first setting two agents can exchange items bilaterally in a cyclic

fashion. In the second setting agents exchange items through chains; at time 𝑡 = 0, there

are 𝑑 special agents called altruistic agents who are willing to give an item without getting

anything in return (all other agents that will arrive to the market are regular agents who

want to exchange their item for another item).14 Each agent in a chain receives a compatible

item from one agent and gives to the next. At any given time, there are exactly 𝑑 ≥ 1

agents who are either altruistic or received an item but have not given their item. The latter

are called bridge agents. We sometimes refer to altruistic agents also by bridge agents. The

transactions between two bridge agents in a given chain is called a chain-segment. We assume

that matches in a chain-segment are conducted instantaneously. A policy is a mapping from

the history of exchanges and the state of the marketplace to a set of feasible exchanges

involving non-overlapping sets of agents.

We adopt the average waiting time in steady-state as the measure of the efficiency of a

policy (the waiting of an agent is the difference between her departure time and her arrival

time). In our model, the average waiting time of one type of agents is equivalent to the

average number of agents of that type in the marketplace divided by the arrival rate of that

type since these two quantities are proportional to each other by Little’s law.

It is convenient to think about the state of the marketplace at any time in terms of a

compatibility graph, which is a directed graph with each agent represented by a node, and a

directed edge from 𝑖 to 𝑗 means that agent 𝑗 finds agent 𝑖’s item compatible. Let 𝒢𝑡 = (𝒱𝑡, ℰ𝑡)

denote the (observed) compatibility graph at time 𝑡. When a new agent arrives directed

edges are formed in each direction independently and with probabilities corresponding to

the agents’ types, between the arriving agent and each agent in the marketplace. A bilateral

exchange is a directed cycle of length two in the compatibility graph and a chain-segment is

a directed path in this graph starting from a bridge or altruistic agent.

We study the following myopic policies, which attempt to match agents upon arrival.

Definition 3 (BilateralMatch(T) for 𝑇 ∈ {𝐻,𝐸}). Upon arrival of a new agent, if a cycle
14Having altruistic agents is an intrinsic property of the market in the sense that some markets do not

have access to such agents.
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of length 2 can be formed with the newly arrived agent, it is removed. If more than one

such cycle exists, priority is assigned to cycles with agents of type 𝑇 . Further ties are broken

uniformly at random.

Definition 4 (ChainMatch(d)). There are 𝑑 bridge or altruistic agents in the market at

any given time. We describe first the policy for 𝑑 = 1. Consider a new arriving agent 𝑖1. If 𝑖1

does not have an incoming edge from the bridge agent then no matches happen. Otherwise,

a chain-segment begins with matching 𝑖1 by the bridge agent and advances as follows. First

we search for an unmatched 𝐻 agent that has an incoming edge from 𝑖1; if there is one or

more such 𝐻 agents, we select one uniformly at random; otherwise, if no such an 𝐻 exists,

we search for an unmatched 𝐸 agent that has an incoming edge from 𝑖1 (again breaking

ties uniformly at random). This process repeats itself immediately from the selected agent

(selected agents cannot be reselected) until we reach an agent that cannot match any other

agent, forming a disjoint path. All agents in the disjoint path leave the market except the

last agent who then becomes a bridge agent.

When there are 𝑑 > 1 altruistic/bridge agents, if there is at least one directed edge from

one of them to the newly arrived agent, one of such edges is selected uniformly at random.

As the process moves forward, each altruistic agent eventually gives her item to an arriving

agent and starts a chain.

Under the ChainMatch(d) policy, upon arrival of a new agent a maximal chain-segment

(path) is identified through local search originating from a bridge agent. 15 Note that the

chain-segment has a positive length if and only if at least one bridge/altruistic agent has a

directed edge to the new agent.

For brevity we often refer to BilateralMatch(E), BilateralMatch(H), and ChainMatch(d),

by ℬ𝐻 , ℬ𝐸, and 𝒞(𝑑), respectively. All the policies above are Markov policies, and thus

define a continuous-time Markov chain (CTMC). The following observation will allow us to

ignore the edges within the market when analyzing the underlying stochastic processes.

15Our local search chain-segment formation process bears similarity to Phase 1 of the two-phase clearing
procedure of [49].
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Observation 1. For each policy ℬ𝐻 , ℬ𝐸, and 𝒞(𝑑), we can construct a 2-dimensional

CTMC where states correspond to the number of waiting 𝐻 and 𝐸 agents, and which has a

consistent evolution with that of the market under the corresponding policy.

The observation is immediate for the bilateral policies ℬ𝐻 and ℬ𝐸; due to their myopic

behavior there are no 2-length cycles in the market except with a new arriving agent, implying

that the corresponding Markov chains can be fully specified using only the set of vertices.

For the 𝒞(𝑑) policy, the observation is more subtle. Note that under this policy there is no

outgoing edge from a bridge agent to any waiting agent, again due to the myopic behavior of

the policy. The first time we examine whether there is an edge from 𝑖 to 𝑗, we effectively flip

a bias coin with probability 𝑝𝐻 (𝑝𝐸) if the agent 𝑗 is of type 𝐻 (𝐸). Importantly, we examine

at most once whether a directed edge from 𝑖 to 𝑗 exists by the definition of the policy since

𝑖 either leaves the market or becomes a bridge agent, in which case it will never match to 𝑗.

Since both the edge formation and the matching policies do not depend on agents’ identities

(rather only on their types) we can merely keep track of the number of agents of each type.

In the remainder of the paper, for any policy 𝒫 , we focus on the simplified state space{︀
[𝐻𝒫

𝑡 , 𝐸
𝒫
𝑡 ]; 𝑡 ≥ 0

}︀
, which captures the number of hard- and easy-to-match agents at any

time 𝑡, and we denote the corresponding transition rate matrix by 𝑄𝒫 .

Given the self-regulating dynamic undergoing each matching process, one would expect

that all three (irreducible) CTMC’s reach steady-state. A rigorous statement and proof is

provided in Appendix B.7. Hereafter, we are concerned only with steady-state analysis; For

policy 𝒫 , we denote its steady-state distribution by 𝜋𝒫 . The random vector [𝐻𝒫 , 𝐸𝒫 ] is the

random number of 𝐻 and 𝐸 agents in steady-state, i.e., the vector is distributed according

to distribution 𝜋𝒫 . Finally we define 𝑤𝒫
𝐻 (𝑤𝒫

𝐸) to be the average waiting time of type 𝐻 (𝐸)

agents under policy 𝒫 . Little’s law implies that

𝑤𝒫
𝐻 =

E[𝐻𝒫 ]

𝜆𝐻
, and 𝑤𝒫

𝐸 =
E[𝐸𝒫 ]

𝜆𝐸
. (5.1)

Since in our model 𝑝𝐻 → 0 while 𝑝𝐸 is kept constant, and all policies are myopic, one

108



would expect that 𝑤𝒫
𝐸 is negligible compared to 𝑤𝒫

𝐻 . We verify this claim below using nu-

merical simulations and analytical proofs (see Figure 5-2 and Lemmas 13 and 14). Therefore

we focus on analyzing the average waiting time of 𝐻 agents under different policies.

In Section 5.3, we derive asymptotic results (𝑝𝐻 → 0) for 𝑤𝒫
𝐻 for different set of param-

eters 𝜆𝐻 , 𝜆𝐸 and 𝑝𝐸. We note that 𝑤𝒫
𝐻 is indeed a function of four parameters, and a more

precise notation would be 𝑤𝒫
𝐻(𝜆𝐻 , 𝜆𝐸, 𝑝𝐻 , 𝑝𝐸), but we drop these parameters for the sake of

brevity.

5.3 Main results

We analyze the average waiting time under the myopic policies defined in Section 5.2. For

bilateral matching polices, we identify a stark threshold in the scaling of waiting time when

moving from the regime where a majority of arrivals are hard-to-match agents to the regime

where the majority of arrivals are easy-to-match. Such a contrast does not exist when agents

are matched through chains. We further study the impact of arrival rates of the two types

on the market performance under the three polices.

5.3.1 Bilateral matching

This section considers the setting, in which agents match only through bilateral exchanges,

i.e. through 2-way cycles.

Theorem 3. Under the BilateralMatch(H) policy and in steady-state, the average waiting

time 𝑤ℬ𝐻
𝐻 satisfies the following.

- If 𝜆𝐻 < 𝜆𝐸, then lim𝑝𝐻→0 𝑝𝐻𝑤
ℬ𝐻
𝐻 =

ln
(︁

𝜆𝐸
𝜆𝐸−𝜆𝐻

)︁
𝑝𝐸𝜆𝐻

.

- If 𝜆𝐻 > 𝜆𝐸, then lim𝑝𝐻→0 𝑝
2
𝐻𝑤

ℬ𝐻
𝐻 =

ln
(︁

2𝜆𝐻
𝜆𝐻+𝜆𝐸

)︁
𝜆𝐻

.

Theorem 3 provides not only the scaling laws on 𝑤ℬ𝐻
𝐻 but also the associated constants.

The following corollaries provide comparative statics with respect to 𝜆𝐻 .
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Corollary 1. Consider the BilateralMatch(H) policy and fix 𝜆𝐸. The limiting average wait-

ing time 𝑤ℬ𝐻
𝐻 increases with 𝜆𝐻 in the interval 𝜆𝐻 < 𝜆𝐸.

Corollary 2. Consider the BilateralMatch(H) policy and fix 𝜆𝐸. The limiting average wait-

ing time 𝑤ℬ𝐻
𝐻 increases with 𝜆𝐻 in the interval 𝜆𝐸 < 𝜆𝐻 < 𝑥*𝜆𝐸, and decreases in the

interval 𝜆𝐻 > 𝑥*𝜆𝐸, where 𝑥* ≈ 2.18 is the unique solution of

(𝑥+ 1) ln(2− 2/(𝑥+ 1)) = 1. (5.2)

The above theorem and corollaries provide several messages on the impact of thickness

on the performance of bilateral matching. First, the main factor in the asymptotic behavior

of 𝑤ℬ𝐻
𝐻 is which type of agents has a larger arrival rate. Some intuition for the scaling factors

is the following. Agents’ average waiting time is inversely proportional to the probability of

a bilateral match to occur. Under a myopic bilateral policy, no existing pair of agents in the

market can match with each other. For an arriving 𝐻 agent, the probability of forming a

bilateral match with an existing 𝐸 agent is 𝑝𝐸𝑝𝐻 , and with an existing 𝐻 agent is 𝑝2𝐻 . When

𝜆𝐻 < 𝜆𝐸, almost all 𝐻 agents are matched with 𝐸 agents resulting in an average waiting

time that scales with 1/𝑝𝐸𝑝𝐻 . When 𝐻 agents arrive more frequently than 𝐸 agents, there

are simply not enough 𝐸 agents to match with 𝐻. So a non-negligible fraction of 𝐻 agents

match with each other and thus the scaling of the average waiting time increases to 1/𝑝2𝐻 .

Second, the arrival rates affect the average waiting times directly and not necessarily

monotonically. Increasing the arrival rate of 𝐸 agents always decreases the average waiting

time. But this is not the case with 𝐻 agents. When 𝜆𝐻 < 𝜆𝐸, the average waiting time of

𝐻 agents increases with 𝜆𝐻 . So in this regime where almost all 𝐻 agents match bilaterally

with 𝐸 agents, increasing 𝜆𝐻 reduces the chance of an arbitrary 𝐻 agent to match with the

next 𝐸 agent. When 𝜆𝐻 > 𝜆𝐸, there is a non-monotone behavior of the waiting time when

increasing 𝜆𝐻 . Increasing 𝜆𝐻 has two effects: (i) more 𝐻 agents must match bilaterally

with their same type, which is a negative effect, and (ii) for an existing 𝐻 agent, it reduces

the time to match with another 𝐻 agent, which is a positive effect. After a certain threshold,

the positive effect from having more 𝐻 agents dominates the negative effect.
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The key insight from the above discussion is that in a heterogeneous market, increasing

the arrival rate does not always result in improving the waiting time since 𝐻 agents impose

a negative externality on other 𝐻 agents under certain market compositions. This cannot

be captured in a homogeneous model with only hard-to-match agents (the model studied in

[8]).

Finally, we comment on the impact of 𝑝𝐸 on the waiting time. When 𝜆𝐻 < 𝜆𝐸, 𝑤ℬ𝐻
𝐻

is decreasing in 𝑝𝐸. On the other hand, when 𝜆𝐻 > 𝜆𝐸, 𝑤ℬ𝐻
𝐻 is independent of 𝑝𝐸. The

intuition is that in the former, all 𝐻 agents match with 𝐸 agents and in the latter the

dominant factor in the average waiting time is due to 2-ways between 𝐻 agents, which is

independent of 𝑝𝐸.

The proof of Theorem 3 amounts to analyzing the underlying 2-dimensional continuous-

time spatially non-homogeneous random walk. The description of the random walk is pre-

sented in Subsection 5.5.1 (Figure 5-8), along with a heuristic that helps us guess the right

constants, and build intuition on the behavior of the random walk. The main idea behind the

proof is establishing concentration results for a 2-dimensional CTMC where the steady-state

distribution decays geometrically when moving away from the expectation. These concen-

tration results allow us to establish matching lower and upper bounds on 𝑤ℬ𝐻
𝐻 (the proof

is outlined in Subsection 5.5.1 with details deferred to Appendix B.2). We note that one

of the main challenges in our analysis is the need to jointly bound the distribution in both

dimensions, because analyzing marginal probability distributions would not result in tight

bounds. As a byproduct of our analysis, in Subsection 5.5.2, we state two auxiliary lemmas

on concentration bounds for a general class of 2-dimensional random walks. The corollar-

ies follow from basic analysis of the corresponding constants (as a function of 𝜆𝐻). Both

corollaries are proved in Appendix B.2.2.

Theorem 4. Under the BilateralMatch(E) policy and in steady-state, the average waiting

time 𝑤ℬ𝐸
𝐻 satisfies the following.

- If 𝜆𝐻 < 𝜆𝐸, then
ln
(︁

𝜆𝐸
𝜆𝐸−𝜆𝐻

)︁
𝑝𝐸𝜆𝐻

≤ lim𝑝𝐻→0 𝑝𝐻𝑤
ℬ𝐸
𝐻 ≤

ln
(︁

2𝜆𝐸
𝜆𝐸−𝜆𝐻

)︁
𝑝𝐸𝜆𝐻

.

- If 𝜆𝐻 > 𝜆𝐸, then lim𝑝𝐻→0 𝑝
2
𝐻𝑤

ℬ𝐸
𝐻 =

ln
(︁

2𝜆𝐻
𝜆𝐻+𝜆𝐸

)︁
𝜆𝐻

.
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Comparing results of Theorems 3 and 4, we observe that when 𝜆𝐻 < 𝜆𝐸, the average

waiting time of 𝐻 agents is larger or equal when prioritizing 𝐸 agents rather then 𝐻 agents

(numerical simulations presented in Subsection 5.4.2 suggest that prioritizing 𝐸 agents re-

sults in a strictly larger average waiting time). Nevertheless, the scaling remains the same.

However, when 𝜆𝐻 > 𝜆𝐸 prioritizing 𝐸 agents does not impact the waiting time of 𝐻 agents.

The intuition is as follows. When 𝜆𝐻 > 𝜆𝐸, the number of 𝐻 agents waiting in the market

scales as 1/𝑝2𝐻 , suggesting that the chance that an 𝐸 agent does not match immediately

upon arrival vanishes. Therefore assigning priority to 𝐸 agents is redundant.16

The proof of Theorem 4 also requires analysis of the underlying 2-dimensional continuous-

time spatially non-homogeneous random walk, and, in most parts, follows a similar structure

to the proof of Theorem 3. A detailed description of the random walk is presented in

Subsection 5.5.3. The proof of the upper and lower bounds is presented in Appendix B.3,

where establishing the upper bound requires new ideas beyond the concentration results: we

couple the Markov process underlying policy ℬ𝐸 with another process in which an 𝐸 agent

that cannot form a match upon arrival turns into an 𝐻 agent.17 In Subsection 5.5.3, we also

provide a heuristic argument that leads us to guess that the exact limit is
ln
(︁

𝜆𝐸+𝜆𝐻
𝜆𝐸−𝜆𝐻

)︁
𝑝𝐸𝑝𝐻

(See

Figure 5-6 in Subsection 5.4.5).

5.3.2 Chain matching

In this section we analyze the ChainMatch(d) policy, under which agents match myopically

through chains.

16 We note that for neither policy BilateralMatch(H) nor BilateralMatch(E), we are able to derive the
exact waiting time behavior when 𝜆𝐸 = 𝜆𝐻 . However, our simulation results, presented in Appendix B.10,
suggest that under both policies, the waiting time scales with 1/𝑝𝐻 .

17In Subsection 5.5.3 we provide a rough intuition on why we cannot close the gap between our upper and
lower bounds on 𝑤ℬ𝐸

𝐻 for the regime 𝜆𝐻 < 𝜆𝐸 .
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Waiting time behavior

Theorem 5. Let 𝑑 ≥ 1 be a constant (independent of 𝑝𝐻). Under the ChainMatch(d) policy

and in steady-state, the average waiting time 𝑤𝒞(𝑑)
𝐻 satisfies

lim
𝑝𝐻→0

𝑝𝐻𝑤
𝒞(𝑑)
𝐻 ≤

ln
(︁

𝜆𝐻

𝜆𝐸(1−(1−𝑝𝐸)𝑑)
+ 1
)︁

𝜆𝐻
.

The above theorem establishes an upper-bound on 𝑤𝒞(𝑑)
𝐻 that scales with 1/𝑝𝐻 . In Appendix

B.9, we also establish a lower-bound on 𝑤
𝒞(𝑑)
𝐻 that scales with 1/𝑝𝐻 . A stronger result is

obtained for the special case, in which 𝑝𝐸 = 1:

Proposition 2. Let 𝑝𝐸 = 1 and 𝑑 ≥ 1 be a constant (independent of 𝑝𝐻). Then

lim
𝑝𝐻→0

𝑝𝐻𝑤
𝒞(𝑑)
𝐻 =

ln
(︁

𝜆𝐻

𝜆𝐸
+ 1
)︁

𝜆𝐻
.

Consequently, lim𝑝𝐻→0 𝑝𝐻𝑤
𝒞(𝑑)
𝐻 decreases with 𝜆𝐸 and 𝜆𝐻 .

First we discuss the intuition behind Proposition 2, which states that when 𝑝𝐸 = 1, any

constant number of altruistic agents will result in the same behavior of 𝑤𝒞(𝑑)
𝐻 . The positive

impact of having 𝑑 > 1 altruistic agents stems from the increase in probability of starting

a new chain-segment. When an 𝐻 agent arrives, the probability that she finds one of the

bridge agents acceptable is 1 − (1 − 𝑝𝐻)
𝑑 which vanishes as 𝑝𝐻 → 0. When an 𝐸 agent

arrives she will always be matched by one of the bridge agents and proceed to advance the

chain-segment, and thus there is no advantage in having more than one bridge agent.

For 𝑝𝐸 < 1, we give a heuristic argument (in Appendix B.5), in which we analyze a

related 3-dimensional random walk by artificially assuming that chain-segments advance

according to an independent Poisson process with a very high rate 𝜇 (recall that under

𝒞(𝑑) policy, chain-segments are formed and executed instantaneously upon arrivals). The

heuristic provides an estimated waiting time that scales as ln
(︁

𝜆𝐻+𝜆𝐸

𝜆𝐻(1−(1−𝑝𝐻)𝑑)+𝜆𝐸

)︁
/(𝑝𝐻𝜆𝐻).

In the limit when 𝑝𝐻 approaches zero, the constant becomes ln
(︁

𝜆𝐻+𝜆𝐸

𝜆𝐸

)︁
/𝜆𝐻 which is
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consistent with Proposition 2. Numerical simulations that are aligned with the result of the

heuristic argument are presented in Subsection 5.4.5 (see Figure 5-7).

The heuristic argument in Appendix B.5 and simulation results of Figure 5-7 both suggest

that lim𝑝𝐻→0 𝑝𝐻𝑤
𝒞(𝑑)
𝐻 (𝑝𝐸) = lim𝑝𝐻→0 𝑝𝐻𝑤

𝒞(𝑑)
𝐻 (𝑝𝐸 = 1).18 This means that, in the limit where

𝑝𝐻 → 0, (1) the variability of 𝑤𝒞(𝑑)
𝐻 (𝑝𝐸) with respect to 𝑑 or 𝑝𝐸 is negligible compared to a

term of order Θ(1/𝑝𝐻), (2) for any 0 < 𝑝𝐸 ≤ 1, 𝑤𝒞(𝑑)
𝐻 (𝑝𝐸) is decreasing in both 𝜆𝐸 and 𝜆𝐻 .

Our simulation results verify these behaviors (see Section 5.4.3 and Figure 5-3; in particular,

note that Figure 5-3 Bottom right illustrates that 𝑤𝒞(𝑑)
𝐻 (𝑝𝐸) does not vary with 𝑝𝐸).

The main intuition for why 𝑤𝒞(𝑑)
𝐻 (𝑝𝐸) does not vary with 𝑑 or 𝑝𝐸 can be summarized as

follows. Under ChainMatch(d), each 𝐸 agent, immediately after being matched, initiates a

sub-segment that includes a sequence of 𝐻 agents, i.e., it has the form 𝐸 −𝐻 − . . .−𝐻.19

Denote the expected number of 𝐻 agents in a sub-segment by E[Σ𝐸]. Observe that with

high probability an existing 𝐻 agent is matched through such a sub-segment, because the

probability that an arriving 𝐻 agent starts a sub-segment of the form 𝐻 −𝐻 − . . . −𝐻 is

vanishing. Further, in steady state, the number of𝐻 agents who join the market (i.e., they do

not match immediately), 𝜆𝐻(1− 𝑝𝐻)𝑑, must equal the number of agents who match through

a sub-segment. Thus the departure rate of 𝐻 agents from the market equals 𝜆𝐸E[Σ𝐸]+𝑜(1),

where 𝑜(1) corresponds to the event that an arriving 𝐻 agent starts a sub-segment. As the

result of this balance equation, we have E[Σ𝐸] = 𝜆𝐻/𝜆𝐸 + 𝑜(1), i.e., E[Σ𝐸] does not depend

on 𝑝𝐸 or 𝑑 (up to a negligible additive factor of order 𝑜(1)).

Therefore, regardless of 𝑝𝐸 and 𝑑, in expectation, each 𝐸 agent “helps" to match the

same number of 𝐻 agents. The only difference between the cases 𝑝𝐸 = 1 and 𝑝𝐸 < 1 is the

timing, in which 𝐸 agents form sub-segments: when 𝑝𝐸 = 1, an 𝐸 agent forms a sub-segment

immediately upon arrival. On the other hand, when 𝑝𝐸 < 1, an arriving 𝐸 agent will join

the market with probability (1−𝑝𝐸)𝑑. In this case, such an 𝐸 agent will start a sub-segment

(of the form 𝐸 −𝐻 − . . .−𝐻) after staying in the market for a random duration which we

18 With a slight abuse of notation, we denoted the expected waiting time of 𝐻 agents under 𝒞(𝑑) policy
with parameter 𝑝𝐸 by 𝑤

𝒞(𝑑)
𝐻 (𝑝𝐸).

19 Note that when 𝑝𝐸 < 1, a chain-segment can consist of multiple sub-segments that are initiated by
some of the 𝐸 agents waiting in the market.
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denote by 𝑋. We can think of 𝑋 as the “delay” in matching the 𝐻 agents in the sub-segment

that starts with the 𝐸 agent. With high probability, 𝑋 remains a constant as 𝑝𝐻 approaches

0 (this follows from Lemma 16 in Appendix B.9, where we show that the expected waiting

time of an 𝐸 agent is a constant). Therefore, the delay caused by the 𝐸 agent joining the

market remains a constant. Consequently, the waiting time of 𝐻 agents in a market with

𝑝𝐸 < 1 is within 𝑜(1/𝑝𝐻) of its counterpart in a market with 𝑝𝐸 = 1. In Appendix B.6, we

provide further details for the above argument and build on this intuition to provide another

heuristic argument to show that lim𝑝𝐻→0 𝑝𝐻𝑤
𝒞(𝑑)
𝐻 (𝑝𝐸) = lim𝑝𝐻→0 𝑝𝐻𝑤

𝒞(𝑑)
𝐻 (𝑝𝐸 = 1).

Finally we comment on the chain-segment formation process; ChainMatch(d) policy forms

chain-segments employing a local search process and indeed our analysis relies on such chain-

segment formation process. This begs the question of how much the waiting time improves if

we employed a global search (that searches for the longest possible chain-segment). A precise

comparison is beyond the scope of our work, however, we make the following remarks: (1)

In Figure 5-4 of Subsection 5.4.3, we numerically study this questions, and we see that

advancing chains locally results in a small loss in comparison to policies that search globally

for the longest possible chain-segment. (2) The lower-bound on the waiting time of any

anonymous Markovian policy (See [8] and Proposition 21 in Appendix B.8) implies that

the scaling of 𝐻-agent waiting time cannot be smaller than 1/𝑝𝐻 (unless the policy makes

𝐸 agents wait for a very long time, i.e., proportional to 1/𝑝𝐻); Theorem 5 shows that the

local-search method already achieves such a scaling.

Under the ChainMatch(d) policy, the length of a chain-segment trigged by a newly arrived

agent is unrestricted. As a result the underlying CTMC is significantly more complicated

to analyze than those that arise from bilateral policies and we need other techniques to

prove Theorem 5. In order to bound 𝑤
𝒞(𝑑)
𝐻 , we couple the underlying Markov chain with a

1-dimensional chain, in which 𝐸 agents that are not matched upon arrival leave the market

immediately (Lemma 3). A key property used in the analysis of the coupled 1-dimensional

chain is that chain-segment formation exhibits a memoryless property.20 This is due to the

local search process used to advance a chain-segment, which randomly selects the next agent
20This is different from the Markov property of the overall CTMC under 𝒞(𝑑).
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among all possible agents (favoring 𝐻 agents). The proof is presented in 5.5.4. Finally, we

note that for the special case 𝑝𝐸 = 1, the original CTMC is a 1-dimensional chain for which

we can prove matching upper and lower bounds on the limit of 𝑤𝒞(𝑑)
𝐻 .

Theorems 3 and 5 together highlight the importance of having altruistic agents that can

initiate chains. In the regime 𝜆𝐻 > 𝜆𝐸 comparing 𝑤ℬ𝐻
𝐻 and 𝑤

𝒞(𝑑)
𝐻 is straightforward as the

former scales as 1/𝑝2𝐻 but the latter only scales as 1/𝑝𝐻 . The following corollary (proven in

appendix B.4) states that in the regime 𝜆𝐻 < 𝜆𝐸 where both 𝑤ℬ𝐻
𝐻 and 𝑤

𝒞(𝑑)
𝐻 scale as 1/𝑝𝐻 ,

ChainMatch(d) performs better:

Corollary 3. For any 𝜆𝐻 , 𝜆𝐸, 𝑝𝐸, and 𝑑, if 𝜆𝐻 < 𝜆𝐸, then:

lim
𝑝𝐻→0

𝑝𝐻𝑤
𝒞(𝑑)
𝐻 < lim

𝑝𝐻→0
𝑝𝐻𝑤

ℬ𝐻
𝐻 .

In Subsection 5.4.4 we further compare BilateralMatch(H) to ChainMatch(d) in order to

understand the importance of attracting easy-to-match agents in markets that have limited

access to altruistic agents.

Chain-segment length

We analyze here the expected length of chain-segments formed under the ChainMatch(d)

policy.

While we focus on the average waiting time to measure efficiency, length of chain-segments

also play a significant role on the operational efficiency of the market. In kidney exchange

for example, executing a chain-segment takes time and bears the risk of match failures.21

These practical considerations motivate extending the analysis to the limiting behavior of

chain-segments.

First we define the chain-segment length. Let [𝐻
𝒞(𝑑)
𝑘 , 𝐸

𝒞(𝑑)
𝑘 ] denote the (discrete-time)

Markov chain embedded in the CTMC [𝐻
𝒞(𝑑)
𝑡 , 𝐸

𝒞(𝑑)
𝑡 ] resulting from observing the system at

21In this stylized model, we abstract away from both of these effects.
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arrival epochs.22 Define:

𝐿𝑘 = 𝐻𝑘 + 𝐸𝑘 −𝐻𝑘+1 − 𝐸𝑘+1 + 1,

and let 𝐿 be its corresponding random variable in steady-state; if the arriving agent cannot

be matched by the bridge agent, she will join the market, and therefore 𝐿𝑘 = 0; otherwise, a

chain-segment of length 𝐿𝑘 ≥ 1 will be formed. The following proposition characterizes the

chain-segment length in the limit:

Proposition 3. Under the ChainMatch(d) policy and in steady-state,

lim
𝑝𝐻→0

E[𝐿 | 𝐿 ≥ 1] =
𝜆𝐻 + 𝜆𝐸(1− 𝑝𝐸)𝑑

𝜆𝐸(1− (1− 𝑝𝐸)𝑑)
+ 1.

The proof is presented in Appendix B.4. We note that the expected chain length is decreasing

in both 𝜆𝐸 and 𝑑, but increasing in 𝜆𝐻 ; intuitively with more 𝐸 agents or more bridge agents,

chain-segments will be formed at a higher rate and thus be shorter (for a fixed 𝜆𝐻). However,

increasing 𝜆𝐻 does not significantly impact the frequency of chain-segment formation, but

given that more 𝐻 agents join the market within two consecutive chain-segments, the length

of the chain-segment grows.

5.4 Numerical studies

In this section, we present a set of numerical simulations that complement the theoretical

results of the previous section. In Subsection 5.4.1 we look at how merging markets with

different compositions affect each market. Subsection 5.4.2 explores the impact of giving

priorities when using the bilateral matching policy. Subsection 5.4.3 presents comparative

statics for chain matching when 𝑝𝐸 < 1, and subsection 5.4.4 highlights the advantage of

having chains. Finally, Subsection 5.4.5 compares our theoretical bounds (for cases for which

we do not have matching upper and lower bounds) to heuristics guesses and simulations.

22Note that every time an agent arrives, the Markov chain advances in discrete time from 𝑘 to 𝑘 + 1.
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All simulations in this section are conducted by first computing the average number of

agents in the market; then applying Little’s law (5.1). In order to compute the number of

agents, we simulate the discrete-time Markov chain embedded in the corresponding CTMC

resulting from observing the system at arrival epochs. We denote 𝑇 the number of arrivals

(not counting the 𝑑 initial altruistic agents in the case of 𝒞(𝑑)). In order to remove the

transient behavior, the numbers reported correspond to the time average over the second

half of the simulation.

5.4.1 Merging markets

We consider here the effects from merging two markets, with arrival rates (𝜆𝐻,1, 𝜆𝐸,1) and

(𝜆𝐻,2, 𝜆𝐸,2) under bilateral exchanges using the BilateralMatch(H) policy. This expands

Theorem 3, which provides comparative statics in the limit when 𝑝𝐻 tends to zero.

We consider two numerical examples to illustrate these effects. In both examples the

arrival rates to the first market are kept fixed while the arrivals rates to the second market

vary. For any pair of arrivals we compare the waiting time 𝑤𝐻,1 of 𝐻 agents in the first

market with the average waiting time 𝑤𝐻,1−2 in the merged market. The results are plotted

in Figure 5-1. Consistent with our prediction, merging can result in one of the markets being

worse off. Note that this can happen even if the majority type is the same for both markets

(e.g., when 𝜆𝐻,1 > 𝜆𝐸,1 and 𝜆𝐻,2 > 𝜆𝐸,2). This highlights the effect of arrival rates beyond

their impact on the scaling factor. 23

5.4.2 Impact of priorities in bilateral matching

We compare here the average waiting time of 𝐻 agents under the BilateralMatch(H) and

BilateralMatch(E) policies. From Theorems 3 and 4 it follows that (i) when 𝜆𝐻 > 𝜆𝐸,

asymptotically, the average waiting time of 𝐻 agents is the same under both policies, but

(ii) when 𝜆𝐻 < 𝜆𝐸, the average waiting time of 𝐻 agents under ℬ𝐻 is at most the average

23We note that the constants computed in Theorem 3 allow us to determine whether market one is better
off or worse off for any (𝜆𝐻,2, 𝜆𝐸,2), and to compute the boundary separating the two regions, in the limit
𝑝𝐻 → 0.
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Figure 5-1: Change in the waiting time for 𝐻 agents of the first market: 𝑤𝐻,1−2 − 𝑤𝐻,1, as
a function of (𝜆𝐻,2, 𝜆𝐸,2), for 𝑝𝐸 = 0.5, 𝑝𝐻 = 0.02, after 𝑇 = 105 iterations. Left subplot
corresponds to 𝜆𝐻,1 = 1, 𝜆𝐸,1 = 1.3, right subplot corresponds to 𝜆𝐻,1 = 1.3, 𝜆𝐸,1 = 1. The
purple line separates the region where the waiting time increases after merging (below the
line) and the region where it decreases (above the line).

waiting time under ℬ𝐸. However, numerical simulations suggest that the average waiting

time of 𝐻 agents is indeed strictly smaller under ℬ𝐻 than under ℬ𝐸 (Figure 5-2 left). For

instance, in simulation setting of Figure 5-2, when 𝜆𝐻 = 4 and 𝜆𝐸 = 5 , we have 𝑤ℬ𝐸
𝐻 = 534

while 𝑤ℬ𝐻
𝐻 = 388. The average waiting times of 𝐸 agents are plotted in Figure 5-2(right).
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Figure 5-2: Comparison of 𝑤𝐻 (left) and 𝑤𝐸 (right) for ℬ𝐻 , ℬ𝐸, as a function of 𝜆𝐻 , for a
fixed 𝜆𝐸 = 5, 𝑇 = 2 · 106, 𝑝𝐸 = 0.5 and 𝑝𝐻 = 0.002.

The main insight is that the benefit from assigning priority to hard-to-match agents
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varies based on the composition of the market. Further, our qualitative insights can be

useful in understanding the tradeoffs that may arise in markets where easy-to-match agents

have outside options. For example, when 𝜆𝐻 > 𝜆𝐸, there is no tradeoff from prioritizing 𝐸

agents. This issue arises in kidney exchange, where very easy-to-match patient-donor pairs

(such as compatible pairs) may choose to get transplanted elsewhere.

5.4.3 Comparative statics in chain matching with 𝑝𝐸 < 1

We run simulations using ChainMatch(d) to numerically explore the effects that varying 𝜆𝐸,

𝜆𝐻 , and 𝑑 can have on 𝑤𝒞(𝑑)
𝐻 . We find that 𝑤𝒞(𝑑)

𝐻 decreases as the arrival rate of either types

increases (Figure 5-3 top left and top right). Moreover, the value of an additional altruistic

agent also diminishes with increasing 𝜆𝐸, 𝜆𝐻 or 𝑑. Further, as 𝑝𝐻 decreases, the impact of

𝑑 vanishes (Figure 5-3 bottom left). Recall from Proposition 2 that when 𝑝𝐸 = 1, 𝑤𝒞(𝑑)
𝐻

(i) decreases in 𝜆𝐸, (ii) decreases in 𝜆𝐻 , and (iii) does not depend on 𝑑. Although proving

(i)-(iii) for 𝑝𝐸 < 1 remains an open problem, Figure 5-3 top left, top right, and bottom left

show numerically (i)-(iii), respectively, when 𝑝𝐸 = 0.5.

Further, the bottom right plot in figure 5-3 plots 𝑤𝒞(𝑑)
𝐻 when 𝑝𝐸 ranges from 0.1 to 1,

and it shows that 𝑤𝒞(𝑑)
𝐻 does not vary with 𝑝𝐸 (we refer the reader to Appendix B.6, for a

heuristic argument on why - in the limit - 𝑤𝒞(𝑑)
𝐻 does not vary with 𝑝𝐸 and 𝑑).

Next we study the loss from employing a local search for forming chain-segments rather

than looking for the maximum-length path at each chain-segment-formation. For this, we

define a new policy Max-Chains that upon starting a chain-segment searches for the chain-

segment that maximizes lexicographically the number of 𝐻 agents matched, while breaking

ties over matching more agents over all.

We observe that the benefit of using Max-Chains is small when 𝜆𝐻 is small compared

to 𝜆𝐸, and it increases as 𝜆𝐻 increases. If we consider 𝜆𝐸/2 ≤ 𝜆𝐻 ≤ 2𝜆𝐸 as the practical

range relevant to the kidney exchange programs, our simulations suggest that the loss ranges

between 5 to 15%.
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Figure 5-3: Top left: 𝑤𝒞(𝑑)
𝐻 as a function of 𝜆𝐸, for varying values of 𝑑, for fixed 𝜆𝐻 = 2,

𝑇 = 105, 𝑝𝐸 = 0.5, 𝑝𝐻 = 0.02. Top right: 𝑤𝒞(𝑑)
𝐻 as a function of 𝜆𝐻 , for varying values of 𝑑,

for fixed 𝜆𝐸 = 2, 𝑇 = 105, 𝑝𝐸 = 0.5, 𝑝𝐻 = 0.02. Bottom left: Normalized waiting times (i.e.,
𝑝𝐻𝑤

𝒞(𝑑)
𝐻 ) in the case of chains as a function of − log(𝑝𝐻), for varying values of 𝑑, for fixed

𝜆𝐻 = 2, 𝜆𝐸 = 1, 𝑇 = 105, 𝑝𝐸 = 0.5. Bottom right: 𝑤𝒞(𝑑)
𝐻 as a function of 𝑝𝐸, for different

values of 𝑑, for fixed 𝜆𝐸 = 1, 𝜆𝐻 = 2, 𝑇 = 106 and 𝑝𝐻 = 0.02.

5.4.4 Impact of the matching technology: bilateral vs. chain match-

ing

Theorems 3 and 5 imply that for any arrival rates (𝜆𝐻 , 𝜆𝐸) matching through chains even

with only one initial altruistic agent (i.e., under ChainMatch(1)) results in shorter average

waiting time for 𝐻 agents. The theoretical gap is significant when 𝜆𝐻 > 𝜆𝐸. We run

numerical simulations for a variety of parameters to examine these differences (see Figure

5-5).

To further highlight the benefit of matching through chains, we consider the following
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Figure 5-4: Waiting times 𝑤𝐻 for chains conducted with local-search (𝒞(𝑑)) and Max-Chains
as a function of 𝜆𝐻 , for fixed 𝜆𝐸 = 2, 𝑇 = 105, 𝑝𝐸 = 0.5, 𝑝𝐻 = 0.002.
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Figure 5-5: Comparison of 𝑤𝐻 , for ℬ𝐻 , 𝒞(1), and 𝒞(20), as a function of 𝜆𝐻 , for a fixed
𝜆𝐸 = 5, 𝑇 = 2 * 106, 𝑝𝐸 = 0.5 and 𝑝𝐻 = 0.02.

scenario: Suppose market 1 has rates (𝜆𝐻,1, 𝜆𝐸,1) with 𝜆𝐻,1 < 𝜆𝐸,1 and is endowed with 𝑑

altruistic agents and employs policy ChainMatch(d). Now consider a second market with

arrival rates (𝜆𝐻,2, 𝜆𝐸,2) that does not have any altruistic agents and therefore employs

BilateralMatch(H). Further suppose 𝜆𝐻,1 = 𝜆𝐻,2 = 𝜆𝐻 ; how many more 𝐸 agents does

market 2 need to attract to be able to compete with market 1 in term of average waiting

times of 𝐻 agents? In the limit 𝑝𝐻 → 0, by Theorems 3 and 5, for this to happens it is

necessary that:
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ln
(︁

𝜆𝐻

𝜆𝐸,1(1−(1−𝑝𝐸)𝑑)
+ 1
)︁

𝜆𝐻
≥

ln
(︁

𝜆𝐸,2

𝜆𝐸,2−𝜆𝐻

)︁
𝜆𝐻𝑝𝐸

,

which is equivalent to:

𝜆𝐸,2 ≥
𝜆𝐻(𝜆𝐻 + 𝜆𝐸,1(1− (1− 𝑝𝐸)𝑑))𝑝𝐸

(𝜆𝐻 + 𝜆𝐸,1(1− (1− 𝑝𝐸)𝑑))𝑝𝐸 − (𝜆𝐸,1(1− (1− 𝑝𝐸)𝑑))𝑝𝐸
.

Note that the above condition is only a necessary condition, and valid in the limit 𝑝𝐻 → 0. In

the case where 𝑝𝐸 = 1, Proposition 2 makes this also a sufficient condition, and it simplifies

to 𝜆𝐸,2 ≥ 𝜆𝐻 + 𝜆𝐸,1. In table 5.1, we report the numerical values for 𝜆𝐸,2 such that in

simulations 𝑤ℬ𝐻
𝐻,2 = 𝑤

𝒞(𝑑)
𝐻,1 .

𝑝𝐸 0.1 0.3 0.5 0.9 1.0
d = 1 20.75 8.45 5.4 3.3 3.0
d = 10 27.15 10.25 6.55 3.9 3.6
d = 50 66.05 24.8 15.1 9.0 8.15

Table 5.1: 𝜆𝐸,2 as a function of 𝑝𝐸 and 𝑑, for 𝑝𝐻 = 0.02, 𝜆𝐻 = 1 and 𝜆𝐸,1 = 2, 𝑇 = 106.

5.4.5 Theoretical bounds vs heuristics vs. simulation

In two cases, our theoretical results yield bounds which are are not tight. However, in each of

these cases we generate a heuristic guess for the exact behaviour. We plot here the simulation

results, our heuristically generated guess (described later in Section 5.5.3 and Appendix B.5)

and the theoretical bounds for a variety of parameters. The first case is under the policy

BilateralMatch(E) when 𝜆𝐻 < 𝜆𝐸. Figure 5-6 shows that our heuristic analysis (described in

Section 5.5.3) results in a guess of
ln
(︁

𝜆𝐸+𝜆𝐻
𝜆𝐸−𝜆𝐻

)︁
𝑝𝐸𝑝𝐻

that coincides with the simulation results. The

figure further illustrates the behavior of our theoretical bounds for different parameters.

The second case is under the policy ChainMatch(d) when 𝑝𝐸 < 1. Here too, Figure 5-7

shows that that our heuristic guess ln
(︁

𝜆𝐻+𝜆𝐸

𝜆𝐻(1−(1−𝑝𝐻)𝑑)+𝜆𝐸

)︁
/𝑝𝐻 (described in Appendix B.5)

coincides with the numerical simulations.
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Figure 5-6: Left: 𝑤ℬ𝐸
𝐻 as a function of 𝜆𝐻 , for 𝜆𝐸 = 5, 𝑇 = 105, 𝑝𝐸 = 0.5, 𝑝𝐻 = 0.002.

Right: 𝑤ℬ𝐸
𝐻 as a function of 𝜆𝐸, for 𝜆𝐻 = 1, 𝑇 = 105, 𝑝𝐸 = 0.5, 𝑝𝐻 = 0.002.
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Figure 5-7: Left: 𝑤𝒞(1)
𝐻 as a function of 𝜆𝐻 , for 𝜆𝐸 = 3, 𝑇 = 105, 𝑝𝐸 = 0.5, 𝑝𝐻 = 0.002.

Right: 𝑤𝒞(1)
𝐻 as a function of 𝜆𝐸, for 𝜆𝐻 = 3, 𝑇 = 105, 𝑝𝐸 = 0.5, 𝑝𝐻 = 0.002.
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5.5 Proof ideas and outline of analysis

The analysis of each policy follows a similar pattern, although technically analyzing the

bilateral setting and the chain setting are very different. For bilateral policies, we first offer

a heuristic that will help guessing the value of E[𝐻𝒫 ] (which is proportional to the average

waiting time) and then proceed to rigourously analyze E[𝐻𝒫 ]. For the chain policy, we

first couple the underlying Markov chain with a 1-dimensional chain whose number of 𝐻

agents serve as an upper-bound on the number of 𝐻 agents under ChainMatch(d) policy.

We then proceed to analyze the expected number of 𝐻 agents in the coupled chain. In all

three settings, the main idea is to prove that 𝐻𝒫 is concentrated around E[𝐻𝒫 ] without

directly computing the steady-state distribution, and based on the exponential decay of the

tail distribution when moving away from the expected value.

We often use the following notations to avoid terms that vanish in the limit 𝑝𝐻 → 0. Let

𝑓, 𝑔 : [0, 1] → R; We write that 𝑓 = 𝑜(𝑔) if lim𝑝𝐻→0
𝑓(𝑝𝐻)
𝑔(𝑝𝐻)

= 0 and write that 𝑓 = 𝑂(𝑔) if

lim sup𝑝𝐻→0
𝑓(𝑝𝐻)
𝑔(𝑝𝐻)

<∞.

5.5.1 The BilateralMatch(H) policy

In this section we analyze the policy ℬ𝐻 , which forms myopically bilateral exchanges while

prioritizing 𝐻 agents. Under this policy, the evolution of the number of 𝐻 and 𝐸 agents in

the market can be modeled by a CTMC [𝐻𝑡, 𝐸𝑡] ∈ N2 with the following transition rates.

𝑄ℬ𝐻 ([ℎ, 𝑒], [ℎ+ 1, 𝑒]) = 𝜆𝐻(1− 𝑝2𝐻)ℎ(1− 𝑝𝐸𝑝𝐻)𝑒 (5.3a)

𝑄ℬ𝐻 ([ℎ, 𝑒], [ℎ− 1, 𝑒]) = 𝜆𝐻(1− (1− 𝑝2𝐻)ℎ) + 𝜆𝐸(1− (1− 𝑝𝐸𝑝𝐻)ℎ) (5.3b)

𝑄ℬ𝐻 ([ℎ, 𝑒], [ℎ, 𝑒+ 1]) = 𝜆𝐸(1− 𝑝𝐸𝑝𝐻)ℎ(1− 𝑝2𝐸)𝑒 (5.3c)

𝑄ℬ𝐻 ([ℎ, 𝑒], [ℎ, 𝑒− 1]) = 𝜆𝐻(1− 𝑝2𝐻)ℎ(1− (1− 𝑝𝐸𝑝𝐻)𝑒) + 𝜆𝐸(1− 𝑝𝐸𝑝𝐻)ℎ(1− (1− 𝑝2𝐸)𝑒))

(5.3d)

The rates are computed based on the Poisson thinning property, simple counting argu-
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ments, and our assumption that edges are formed independently.

- Rightward rate (5.3a): moving from [ℎ, 𝑒] to [ℎ+1, 𝑒] happens when an 𝐻 agent arrives

and cannot form a cycle with any of the existing 𝐻 agents (with probability (1−𝑝2𝐻)ℎ)

nor with any of the existing 𝐸 agents (with probability (1− 𝑝𝐸𝑝𝐻)𝑒).

- Leftward rate (5.3b): moving from [ℎ, 𝑒] to [ℎ− 1, 𝑒] happens when an 𝐻 agent arrives

and forms a cycle with at least one of the existing 𝐻 agents (probability (1−(1−𝑝2𝐻)ℎ))

or an 𝐸 agent arrives and forms a cycle with at least one of the existing 𝐻 agents

(probability (1− (1− 𝑝𝐸𝑝𝐻)ℎ)).

- Upward rate (5.3c): moving from [ℎ, 𝑒] to [ℎ, 𝑒 + 1] happens when an 𝐸 agent arrives

and cannot form a cycle with any of the existing 𝐻 agents (probability (1 − 𝑝𝐸𝑝𝐻)ℎ)

nor with with any of the existing 𝐸 agents (probability (1− 𝑝2𝐸)𝑒).

- Downward rate (5.3d): moving from [ℎ, 𝑒] to [ℎ, 𝑒−1] happens when an 𝐻 agent arrives

and cannot form a cycle with any of the existing 𝐻 agent (probability (1− 𝑝2𝐻)ℎ) but

can form a cycle with an existing 𝐸 agents (probability (1 − (1 − 𝑝𝐸𝑝𝐻)𝑒)), or an 𝐸

agent arrives that cannot form a cycle with any of the existing 𝐻 agents (probability

(1−𝑝𝐸𝑝𝐻)ℎ) but can form a cycle with an existing 𝐸 agent (probability (1−(1−𝑝2𝐸)𝑒)).

Note that the process is a 2-dimensional continuous-time spatially non-homogeneous

random walk. Figure 5-8 illustrates this random walk along with its transition rates. Also

observe that the leftward and downward rates (5.3b) and (5.3d) depend on the priority

assigned to 𝐻 agents, and these rates will change when prioritizing 𝐸 agents, as we will see

in the Subsection 5.5.3. However, fixing the priority, changing the tie-breaking rule between

agents of the same type (for example, favoring agents with longer waiting times instead of

selecting one at random) does not change the transition rates.

In Appendix B.7, we prove that the above (irreducible) CTMC is positive recurrent, and

therefore reaches steady-state. This is intuitive given the above transition rates and the

“self-regulating” behavior of the process. The larger the market, the larger the probability
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[h, e] [h+1, e][h-1, e]

[h, e+1]

[h, e-1] ......

......

𝜆𝐻(1− 𝑝2𝐻)ℎ(1− 𝑝𝐸𝑝𝐻)𝑒

𝜆𝐻(1− (1− 𝑝2𝐻)ℎ)

+𝜆𝐸(1− (1− 𝑝𝐸𝑝𝐻)ℎ)

𝜆𝐸(1− 𝑝𝐸𝑝𝐻)ℎ(1− 𝑝2𝐸)𝑒

𝜆𝐻(1− 𝑝2𝐻)ℎ(1− (1− 𝑝𝐸𝑝𝐻)𝑒)

+𝜆𝐸(1− 𝑝𝐸𝑝𝐻)ℎ(1− (1− 𝑝2𝐸)𝑒)

Figure 5-8: Transition rates (solid arrows) under the CTMC induced by the ℬ𝐻 policy.

that an arriving agent can form a cycle. Note that in steady-state, the expected drift for

this CTMC in both horizontal and vertical dimension is zero.

The drifts are given in (5.3a)-(5.3d), and therefore,

E𝜆𝐻(1− 𝑝2𝐻)𝐻
ℬ𝐻 (1− 𝑝𝐸𝑝𝐻)𝐸

ℬ𝐻 − 𝜆𝐻(1− (1− 𝑝2𝐻)𝐻
ℬ𝐻 )− 𝜆𝐸(1− (1− 𝑝𝐸𝑝𝐻)𝐻

ℬ𝐻 ) = 0

(5.4a)

E[𝜆𝐸(1− 𝑝𝐸𝑝𝐻)𝐻
ℬ𝐻 (1− 𝑝2𝐸)𝐸

ℬ𝐻 − 𝜆𝐻(1− 𝑝2𝐻)𝐻
ℬ𝐻 (1− (1− 𝑝𝐸𝑝𝐻)𝐸

ℬ𝐻 )

− 𝜆𝐸(1− 𝑝𝐸𝑝𝐻)𝐻
ℬ𝐻 (1− (1− 𝑝2𝐸)𝐸

ℬ𝐻 )] = 0 (5.4b)

Assuming that the random variables 𝐻ℬ𝐻 and 𝐸ℬ𝐻 are very concentrated around their

expectations, a reasonable approximation is to move the expectation inside the functions and

solve the above system of nonlinear equations, and thus obtain approximations for E[𝐻ℬ𝐻 ]

and E[𝐸ℬ𝐻 ].
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- For 𝜆𝐻 < 𝜆𝐸, if we plug [𝐻ℬ𝐻 , 𝐸ℬ𝐻 ] =

[︂
ln
(︁

𝜆𝐸
𝜆𝐸−𝜆𝐻

)︁
𝑝𝐸𝑝𝐻

, − ln(2)

ln(1−𝑝2𝐸)

]︂
into (5.4a)-(5.4b), the

right-hand sides will be 𝑂(𝑝𝐻) terms.

- For 𝜆𝐻 > 𝜆𝐸, if we plug [𝐻ℬ𝐻 , 𝐸ℬ𝐻 ] =

[︂
ln
(︁

2𝜆𝐻
𝜆𝐻+𝜆𝐸

)︁
𝑝2𝐻

, 0

]︂
into (5.4a)-(5.4b), the right-hand

sides will be 𝑂(𝑝2𝐻) terms.

This heuristic exercise provides us the correct value of E[𝐻ℬ𝐻 ] in both cases. To establish

this value rigorously and prove Theorem 3 we show, in the following two propositions, that

𝐻ℬ𝐻 is highly concentrated around its mean.

Proposition 4. [Lower-bound] Under ℬ𝐻 and in steady-state,

- If 𝜆𝐻 < 𝜆𝐸, there exists a constant 𝑐1 such that:

P
[︂
𝐻ℬ𝐻 ≤ 1

𝑝𝐸𝑝𝐻

(︂
ln

(︂
𝜆𝐸

𝜆𝐸 − 𝜆𝐻

)︂
− 𝑐1𝑝1/4𝐻

)︂]︂
≤ 𝑜(𝑝𝐻).

- If 𝜆𝐻 > 𝜆𝐸, there exists a constant 𝑐2 such that:

P
[︂
𝐻ℬ𝐻 ≤ 1

𝑝2𝐻

(︂
ln

(︂
2𝜆𝐻

𝜆𝐸 + 𝜆𝐻

)︂
− 𝑐2
√
𝑝𝐻

)︂]︂
≤ 𝑜(𝑝𝐻).

24

Proposition 5. [Upper-bound] Under ℬ𝐻 and in steady-state, for any 𝑘 ≥ 0,

- If 𝜆𝐻 < 𝜆𝐸, there exists a function 𝛾(𝑝𝐻) = 1−√𝑝𝐻 + 𝑜(
√
𝑝𝐻) and a constant 𝑐3 such

that:

P
[︂
𝐻ℬ𝐻 ≥ 1

𝑝𝐸𝑝𝐻

(︂
ln

(︂
𝜆𝐸

𝜆𝐸 − 𝜆𝐻

)︂
+ 𝑐3
√
𝑝𝐻

)︂
+ 𝑘

]︂
≤ 𝛾(𝑝𝐻)

𝑘

1− 𝛾(𝑝𝐻)
.

- If 𝜆𝐻 > 𝜆𝐸, there exists a function 𝛾′(𝑝𝐻) = 1−√𝑝𝐻 +𝑜(
√
𝑝𝐻) and a constant 𝑐4 such

that:

P
[︂
𝐻ℬ𝐻 ≥ 1

𝑝2𝐻

(︂
ln

(︂
2𝜆𝐻

𝜆𝐸 + 𝜆𝐻

)︂
+ 𝑐4
√
𝑝𝐻

)︂
+ 𝑘

]︂
≤ 𝛾′(𝑝𝐻)

𝑘

1− 𝛾′(𝑝𝐻)
.

24While we do have closed form formulas for 𝑐1, 𝑐2 (similarly for 𝑐3, 𝑐4 defined in the next proposition),
these values are not informative. We refer the reader to the proofs for more details.
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Note that in both cases in Proposition 5, if 𝑘 = 𝑝
−3/4
𝐻 then the right-hand sides become

𝑜(𝑝2𝐻).

The proof of Theorem 3 is a straightforward application of these propositions and the de-

tails are presented in Appendix B.2.1. To prove these propositions we derive exponentially

decaying bounds on tails of the steady-state distribution of 𝐻ℬ𝐻 and 𝐸ℬ𝐻 . In the next

subsection we present two auxiliary lemmas that establish such bounds for a general class of

2-dimensional continuous-time random walks that includes the random walk defined above.

The proof of Propositions 4 and 5 amount to applying these lemmas with appropriately

defined parameters. The proofs are presented in Appendix B.2.4 and B.2.3, respectively.

5.5.2 Concentration bounds for a general class of 2-dimensional ran-

dom walks

In the analysis of both BilateralMatch(H) and BilateralMatch(E) policies, we repeatedly

bound the left-tail or the right-tail of the steady-state distribution of the number of 𝐻 agents

in the market. These bounds rely on certain properties of the corresponding 2-dimensional

continuous-time random walks, which allow us to establish exponential decay on each tail

of the steady-state distribution. To avoid repeating these concentration results for each

particular setting, we take a unifying approach and state the following two auxiliary lemmas

that establish concentration results for a general class of 2-dimensional random walks under

certain conditions. These lemmas maybe useful in other applications that give rise to similar

random walks.

Lemma 1. [Lower-bound] Let [𝑋𝑡, 𝑌𝑡] ∈ N2 be a positive recurrent continuous time random

walk with transition rate matrix 𝑄 and [𝑋, 𝑌 ] be a corresponding random vector following

its steady-state distribution. Suppose the following exist:

Condition 1. A set 𝑆 ⊂ N and a constant 𝜖 > 0 such that P[𝑌 ̸∈ 𝑆] ≤ 𝜖.

Condition 2. A non-increasing function 𝑓 : N ↦→ (0,∞) such that ∀𝑦 ∈ 𝑆, 𝑄([𝑥, 𝑦], [𝑥 +

1, 𝑦]) ≥ 𝑓(𝑥).
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Condition 3. A non-decreasing function 𝑔 : N ↦→ (0,∞) such that ∀𝑦 ∈ 𝑆, 𝑄([𝑥, 𝑦], [𝑥 −

1, 𝑦]) ≤ 𝑔(𝑥).

Then for all 𝜌 < 1 and 𝜂 ∈ N such that 𝑔(𝜂+1)
𝑓(𝜂)

< 𝜌, and any 𝑘 > 0 we have:

P[𝑋 ≤ 𝜂 − 𝑘] ≤ 𝜂𝜖

(︂
1 +

1

𝑓(𝜂)− 𝑔(𝜂 + 1)

)︂
+

𝜌𝑘

1− 𝜌
.

Proof of Lemma 1. Let 𝜋(𝑥, 𝑦) be the joint distribution of [𝑋, 𝑌 ], and consider he marginal

distribution of 𝑋: 𝜋𝑋(𝑥) =
∑︀

𝑦≥0 𝜋(𝑥, 𝑦). In steady-state, conservation of flow implies:

∑︁
𝑦∈𝑆

𝜋(𝑥+ 1, 𝑦)𝑄([𝑥+ 1, 𝑦], [𝑥, 𝑦]) +
∑︁
𝑦 ̸∈𝑆

𝜋(𝑥+ 1, 𝑦)𝑄([𝑥+ 1, 𝑦], [𝑥, 𝑦])

=
∑︁
𝑦∈𝑆

𝜋(𝑥, 𝑦)𝑄([𝑥, 𝑦], [𝑥+ 1, 𝑦]) +
∑︁
𝑦 ̸∈𝑆

𝜋(𝑥, 𝑦)𝑄([𝑥, 𝑦], [𝑥+ 1, 𝑦]).

Using Conditions 2 and 3, we upper-bound the left hand side and lower-bound the right

hand side which results in having:

𝑔(𝑥+ 1)P[𝑋 = 𝑥+ 1, 𝑌 ∈ 𝑆] + P[𝑋 = 𝑥+ 1, 𝑌 ̸∈ 𝑆] ≥ 𝑓(𝑥)P[𝑋 = 𝑥, 𝑌 ∈ 𝑆].

Let 𝜋𝑆(𝑥) = P[𝑋 = 𝑥, 𝑌 ∈ 𝑆] =
∑︀

𝑦∈𝑆 𝜋(𝑥, 𝑦). Observe that by Condition 1 we have:

𝜋𝑋(𝑥) ≤ 𝜋𝑆(𝑥) + 𝜖. Using the fact that 𝑔 is non-decreasing and 𝑓 is non-increasing, we get

for 𝑥 ≤ 𝜂:

𝜋𝑆(𝑥) ≤
𝑔(𝑥+ 1)

𝑓(𝑥)
𝜋𝑆(𝑥+ 1) +

P[𝑌 ̸∈ 𝑆]
𝑓(𝑥)

≤ 𝜌𝜋𝑆(𝑥+ 1) +
𝜖

𝑓(𝜂)
.

We can subtract 𝜖/𝑓(𝜂)
1−𝜌

from both sides and iterate: for all 𝑗 ≥ 0,

𝜋𝑆(𝜂 − 𝑗)−
𝜖/𝑓(𝜂)

1− 𝜌
≤ 𝜌𝑗

(︂
𝜋𝑆(𝜂)−

𝜖/𝑓(𝜂)

1− 𝜌

)︂
≤ 𝜌𝑗.
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This allows us to conclude that for any 𝑘 > 0:

P[𝑋 ≤ 𝜂 − 𝑘] =
𝜂−𝑘∑︁
𝑖=0

𝜋𝑋(𝑖) ≤ (𝜂 − 𝑘)𝜖+
𝜂∑︁

𝑗=𝑘

𝜋𝑆(𝜂 − 𝑗)

≤ (𝜂 − 𝑘)𝜖
(︂
1 +

1/𝑓(𝜂)

1− 𝜌

)︂
+

𝜂∑︁
𝑗=𝑘

𝜌𝑗 ≤ 𝜂𝜖

(︂
1 +

1

𝑓(𝜂)(1− 𝜌)

)︂
+

𝜌𝑘

1− 𝜌
.

Lemma 2. [Upper-bound] Let [𝑋𝑡, 𝑌𝑡] ∈ N2 be a positive recurrent continuous time random

walk with transition rate matrix 𝑄 and let [𝑋, 𝑌 ] be a corresponding random vector following

its steady-state distribution. Suppose the following exist:

Condition 1. A mapping 𝑆 : N ↦→ 2N and two constants 𝑐 ∈ R+, 𝛿 ∈ (0, 1) such that

P[𝑌 ̸∈ 𝑆(𝑥)] ≤ 𝑐𝛿𝑥.

Condition 2. Two functions 𝑓, 𝑔 : N ↦→ (0,∞) such that ∀𝑦 ∈ 𝑆, 𝑄([𝑥, 𝑦], [𝑥 + 1, 𝑦]) ≤ 𝑓(𝑥)

and 𝑄([𝑥, 𝑦], [𝑥− 1, 𝑦]) ≥ 𝑔(𝑥).

Then for all 𝜂 > 0 and 𝜌 ∈ [𝛿, 1) such that ∀𝑥 ≥ 𝜂, 𝑓(𝑥)
𝑔(𝑥+1)

≤ 𝜌, and 𝛿𝑥

𝑔(𝑥+1)
≤ 𝜌𝑥

𝑔(𝜂+1)
, and for

any 𝑘 > 0 we have: 25

P[𝑋 ≥ 𝜂 + 𝑘] ≤ 𝜌𝑘

1− 𝜌

(︂
1 + 𝑐+

𝑐(𝑘 + 1)

𝑔(𝜂 + 1)− 𝑓(𝜂)

)︂
.

The proof of Lemma 2 follows similar arguments to that of Lemma 1 and is deferred to

Appendix B.1.

25Note that the above conditions are weaker than that of Lemma 1 (where 𝑓 is non-increasing, 𝑔 is non-
decreasing and 𝑓(𝜂)

𝑔(𝜂+1) ≤ 𝜌). We will need this for the proofs of Propositions 4 and 19 where the corresponding
function 𝑔 is not monotone.
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5.5.3 The BilateralMatch(E) policy

The policy ℬ𝐸 forms myopically bilateral exchanges while prioritizing 𝐸 agents. The tran-

sition rate of the underlying CTMC are as follows.

𝑄ℬ𝐸([ℎ, 𝑒], [ℎ+ 1, 𝑒]) = 𝜆𝐻(1− 𝑝2𝐻)ℎ(1− 𝑝𝐸𝑝𝐻)𝑒 (5.5a)

𝑄ℬ𝐸([ℎ, 𝑒], [ℎ− 1, 𝑒]) = 𝜆𝐻(1− 𝑝𝐸𝑝𝐻)𝑒(1− (1− 𝑝2𝐻)ℎ) + 𝜆𝐸(1− 𝑝2𝐸)𝑒(1− (1− 𝑝𝐸𝑝𝐻)ℎ)

(5.5b)

𝑄ℬ𝐸([ℎ, 𝑒], [ℎ, 𝑒+ 1]) = 𝜆𝐸(1− 𝑝𝐸𝑝𝐻)ℎ(1− 𝑝2𝐸)𝑒 (5.5c)

𝑄ℬ𝐸([ℎ, 𝑒], [ℎ, 𝑒− 1]) = 𝜆𝐻(1− (1− 𝑝𝐸𝑝𝐻)𝑒) + 𝜆𝐸(1− (1− 𝑝2𝐸)𝑒) (5.5d)

The rates are computed similarly to those under the BilateralMatch(H). Observe that

prioritizing 𝐸 results in different leftward and downward rates (5.5b) and (5.5d) than the

corresponding rates under BilateralMatch(H). In particular note that in the leftward rate

(moving from [ℎ, 𝑒] to [ℎ−1, 𝑒]), the probability that an arriving 𝐸 agent matches an existing

𝐻 agent depends now on the current number of 𝐸 agents. This dependency does not exist

in BilateralMatch(H). This makes the analysis of BilateralMatch(E) more difficult since we

need to compute tight bounds also on the number of 𝐸 agents in the market. While we are

able to prove such bounds in the case 𝜆𝐻 > 𝜆𝐸, we are not able to do so in the case 𝜆𝐻 < 𝜆𝐸.

As before, we set the expected drifts at steady-state in both dimensions to zero, resulting

in the following system of equations.

E[𝜆𝐻(1− 𝑝2𝐻)𝐻
ℬ𝐸 (1− 𝑝𝐸𝑝𝐻)𝐸

ℬ𝐸 − 𝜆𝐻(1− 𝑝𝐸𝑝𝐻)𝐸
ℬ𝐸 (1− (1− 𝑝2𝐻)𝐻

ℬ𝐸 )

− 𝜆𝐸(1− 𝑝2𝐸)𝐸
ℬ𝐸 (1− (1− 𝑝𝐸𝑝𝐻)𝐻

ℬ𝐸 )] = 0 (5.6a)

E
[︁
𝜆𝐸(1− 𝑝𝐸𝑝𝐻)𝐻

ℬ𝐸 (1− 𝑝2𝐸)𝐸
ℬ𝐸 − 𝜆𝐻(1− (1− 𝑝𝐸𝑝𝐻)𝐸

ℬ𝐸 )− 𝜆𝐸(1− (1− 𝑝2𝐸)𝐸
ℬ𝐸 )
]︁
= 0.

(5.6b)
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Similar to the heuristic analysis for BilateralMatch(H), we can obtain the following ap-

proximations for E[𝐻ℬ𝐸 ] and E[𝐸ℬ𝐸 ].

- For the case 𝜆𝐻 < 𝜆𝐸, if we plug
[︂
ln
(︁

𝜆𝐸+𝜆𝐻
𝜆𝐸−𝜆𝐻

)︁
𝑝𝐸𝑝𝐻

,
ln
(︁

𝜆𝐸+𝜆𝐻
2𝜆𝐸

)︁
ln(1−𝑝2𝐸)

]︂
into (5.6a)-(5.6b), the right-

hand sides will be 𝑂(𝑝𝐻) terms.

- For the case, 𝜆𝐻 > 𝜆𝐸, if we plug
[︂
ln
(︁

2𝜆𝐻
𝜆𝐻+𝜆𝐸

)︁
𝑝2𝐻

, 0

]︂
into (5.6a)-(5.6b), the right-hand

sides will be 𝑂(𝑝2𝐻) terms.

As stated in Theorem 4, for the case 𝜆𝐻 > 𝜆𝐸 the constant for the limit of E[𝐻ℬ𝐸 ]
𝜆𝐻

coincides

with the solution given by the above heuristic. For the case, 𝜆𝐻 < 𝜆𝐸, the constant resulting

from the above heuristic argument lies in between the constants of the lower and upper

bounds we can prove (in Theorem 4), i.e.,

ln
(︁

𝜆𝐸

𝜆𝐸−𝜆𝐻

)︁
𝑝𝐸

≤
ln
(︁

𝜆𝐸+𝜆𝐻

𝜆𝐸−𝜆𝐻

)︁
𝑝𝐸

≤
ln
(︁

2𝜆𝐸

𝜆𝐸−𝜆𝐻

)︁
𝑝𝐸

.

In Figure 5-6 (Section 5.4.5), we numerically show that
ln
(︁

𝜆𝐸+𝜆𝐻
𝜆𝐸−𝜆𝐻

)︁
𝑝𝐸

is indeed the right constant.

The proof of the case 𝜆𝐻 > 𝜆𝐸, and the lower bound when 𝜆𝐻 < 𝜆𝐸 in Theorem 4 follows

similar steps as that of Theorem 3, and it uses the concentration results of the lemmas stated

in the previous subsection. The difficulty in closing the gap between our lower and upper

bounds for the case 𝜆𝐻 < 𝜆𝐸 comes from the dependency of the leftward rate on the current

number of 𝐸 agents (i.e., the second term in (5.5b)). Our bounds on the right-tail of the

distribution of number of 𝐸 agent are not tight enough to result in a matching lower and

upper bounds. Closing this gap remains an open question. A notable difference is that in

(5.3a) and (5.3b), knowing that 𝐸 is bounded above by a constant (independent of 𝑝𝐻) is

enough to get matching upper and lower bounds (up to a vanishing term). This, however, is

not the case in (5.5b). To prove the upper bound in the case 𝜆𝐻 < 𝜆𝐸 we couple the Markov

process underlying policy ℬ𝐸 with another process in which an 𝐸 agent that cannot form a

match upon arrival turns into an 𝐻 agent. See subsection B.3.2.
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5.5.4 The ChainMatch(d) policy

This section proves Theorem 5 and Proposition 2. As we could establish only an upper

bound for the average waiting time when 𝑝𝐸 < 1, we refer the reader to Appendix B.5 for

a heuristic analysis that leads us to guess the constant that we can numerically verify to be

the correct one (See Figure 5-7 of Subsection 5.4.5).

Instead of directly analyzing the ChainMatch(d) policy under our setting, we consider

a modified setting, in which an 𝐸 agent that does not match immediately upon arrival is

removed from the system. We refer to this new setting under the policy ChainMatch(d) by

𝒞(𝑑). Observe that 𝐻𝒞(𝑑)
𝑡 is a 1-dimensional CTMC with the following transition rates:

𝑄𝒞(𝑑)(ℎ, ℎ+ 1) = 𝜆𝐻(1− 𝑝𝐻)𝑑, (5.7a)

𝑄𝒞(𝑑)(ℎ, ℎ− 𝑖) = Λ(1− 𝑝𝐻)ℎ−𝑖

𝑖−1∏︁
𝑗=0

(1− (1− 𝑝𝐻)ℎ−𝑗), for 𝑖 ∈ {1, 2, . . . , ℎ}. (5.7b)

Where we introduced the following notation: Λ = 𝜆𝐻(1 − (1 − 𝑝𝐻)𝑑) + 𝜆𝐸(1 − (1 − 𝑝𝐸)𝑑),

which is the rate at which a new chain-segment (possibly of length 1) starts, regardless of the

current state, and let 𝑆ℎ be the random number of agents removed from the system, starting

from state ℎ.26 The first expression, (5.7a), corresponds to rate, at which an 𝐻 agent arrives,

but cannot be matched by a bridge agent. The second expression, (5.7b), corresponds to the

rate, at which an agent arrives, is matched by a bridge agent and forms a chain-segment of

length 𝑖.27 In Appendix B.7, we show that the above CTMC reaches steady-state.

For any 𝑖 ≤ ℎ we can write

26Note that using the notation from Section 5.3.2, 𝑆ℎ + 1 corresponds to the length of the chain-segment
𝐿𝑘 for the 1-dimensional Markov chain.

27Observe that the case 𝑖 = 0 is possible, and corresponds to an arriving agent that can receive from a
bridge agent but cannot continue the chain further. In that case the CTMC does not transition and we
consider the chain-segment to have length 1.
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𝑄𝒞(𝑑)(ℎ, ℎ− 𝑖) = ΛP[𝑆ℎ = 𝑖] = Λ(1− 𝑝𝐻)ℎ−𝑖

𝑖−1∏︁
𝑗=0

(1− (1− 𝑝𝐻)ℎ−𝑗). (5.8)

Observe that we have

P[𝑆ℎ ≥ 𝑘] =
𝑘−1∏︁
𝑗=0

(1− (1− 𝑝𝐻)ℎ−𝑗) (5.9)

The proof proceeds by showing that E[𝐻𝒞(𝑑)] serves as an upper bound for E[𝐻𝒞(𝑑)]

(Lemma 3) and then computing the limit of E[𝐻𝒞(𝑑)] (Proposition 6). Before that, we make

the following crucial observation: the process of chain-segment formation under 𝒞(𝑑) exhibits

a memoryless property. That is, for any state ℎ and any �̃� ≤ 𝑖 ≤ ℎ:

P[𝑆ℎ = 𝑖] = (1− 𝑝𝐻)ℎ−𝑖

𝑖−1∏︁
𝑗=0

(1− (1− 𝑝𝐻)ℎ−𝑗) (5.10)

=
�̃�−1∏︁
𝑗=0

(︀
1− (1− 𝑝𝐻)ℎ−𝑗

)︀⎡⎣(1− 𝑝𝐻)(ℎ−�̃�)−(𝑖−�̃�)

(𝑖−�̃�)−1∏︁
𝑗=0

(︁
1− (1− 𝑝𝐻)(ℎ−�̃�)−𝑗

)︁⎤⎦
= P[𝑆ℎ ≥ �̃�]P[𝑆ℎ−�̃� = 𝑖− �̃�],

In other words, the event of forming a chain-segment of length 𝑖 can be decomposed into

two independent events: forming a chain-segment of length at least �̃� and then forming a

chain-segment of length 𝑖−�̃� starting with ℎ−�̃� agents in the market. This heavily relies on the

fact that chain-segments proceed in a local search (one by one) fashion and the independence

assumption. Indeed, the chain-segment formation in the original 2-dimensional chain 𝒞(𝑑)

has a similar property.

We now show that E[𝐻𝒞(𝑑)] is an upper bound for E[𝐻𝒞(𝑑)].
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Lemma 3. The expected number of 𝐻 agents in steady-state under 𝒞(𝑑) satisfies:

E[𝐻𝒞(𝑑)] ≤ E[𝐻𝒞(𝑑)].

Proof. The proof is based on a coupling argument. Consider two copies of the arrival process,

one under the setting of 𝒞(𝑑) and one under 𝒞(𝑑). Let [𝐻
𝒞(𝑑)
𝑘 , 𝐸

𝒞(𝑑)
𝑘 ] and 𝐻

𝒞(𝑑)
𝑘 denote the

embedded discrete-time Markov chain resulting from observing the two dynamic systems at

arrival epochs. We prove a stronger result: at any step 𝑘, 𝐻𝒞(𝑑)
𝑘 ≤ 𝐻

𝒞(𝑑)
𝑘 . We prove this

using the following coupling:

1. Upon arrival of an 𝐻 agent we flip a biased coin with probability (1 − 𝑝𝐻)
𝑑. If the

coin flip is head, the 𝐻 agent cannot start a chain-segment, and both 𝐻𝒞(𝑑)
𝑘+1 and 𝐻𝒞(𝑑)

𝑘+1

increment by one. If the coin flip is tail, the 𝐻 agent starts a chain-segment in both

systems. Suppose that [𝐻𝒞(𝑑)
𝑘 , 𝐸

𝒞(𝑑)
𝑘 ] = [ℎ, 𝑒] and 𝐻𝒞(𝑑)

𝑘 = ℎ̃, and let [𝐿𝐻
[ℎ,𝑒], 𝐿

𝐸
[ℎ,𝑒]] denote

the random number of 𝐻 and 𝐸 agents in the chain-segment formed under 𝒞(𝑑) at state

[ℎ, 𝑒]; similarly let 𝑆ℎ̃ be the length of chain-segment formed under 𝒞(𝑑) at state (ℎ̃).

We dinstinguish between three cases:

(a) ℎ̃ ≥ ℎ and the event {𝑆ℎ̃ < (ℎ̃ − ℎ)} occurs: we let [𝐿𝐻
[ℎ,𝑒], 𝐿

𝐸
[ℎ,𝑒]] be realized

independently of 𝑆ℎ̃.

(b) ℎ̃ ≥ ℎ and the event {𝑆ℎ̃ ≥ (ℎ̃− ℎ)} occurs. In this case the memoryless property

of 𝒞(𝑑) in (5.10) can be rewritten as: P[𝑆ℎ̃ = 𝑖 | 𝑆ℎ̃ ≥ (ℎ̃−ℎ)] = P[𝑆ℎ = 𝑖−(ℎ̃−ℎ)].

This divides the chain-segment formation into two independent events: a subchain-

segment of length (ℎ̃−ℎ) is formed, and then a subchain-segment of length 𝜉, where

𝜉 is a random variable drawn from the distribution of 𝑆ℎ.

Now we focus on the chain-segment formation under 𝒞(𝑑). Because 𝐻 agents get

a higher priority, the chain-segment can be computed in steps. Starting with [ℎ, 𝑒]

agents, we first look for a subchain-segment 𝐿𝐻
1 consisting of only 𝐻 agents. When

this chain-segment cannot be continued further with only 𝐻 agents, we look for an

𝐸 agent to continue the chain. If this happens (with probability (1 − (1 − 𝑝𝐸)𝑒),
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we look for a second subchain-segment 𝐿𝐻
2 of only 𝐻 agents, etc.

Note that the first subchain-segment 𝐿𝐻
1 also has the same distribution as 𝑆ℎ.

We can therefore set 𝐿𝐻
1 = 𝜉. All further subchain-segments 𝐿𝐻

𝑖 are realised

independently.

(c) ℎ̃ < ℎ: we let [𝐿𝐻
[ℎ,𝑒], 𝐿

𝐸
[ℎ,𝑒]] and 𝑆ℎ̃ be realized independently.28

2. Upon arrival of an 𝐸 agent we flip a biased coin with probability (1 − 𝑝𝐸)
𝑑. If the

flip is head, the 𝐸 agent cannot start a chain-segment in either system and we have:

𝐻
𝒞(𝑑)
𝑘+1 = 𝐻

𝒞(𝑑)
𝑘 , and 𝐻

𝒞(𝑑)
𝑘+1 = 𝐻

𝒞(𝑑)
𝑘 ; on the other hand, if the flip is tail, the 𝐸 agent

starts a chain-segment in both systems. The chain-segment formation in this case is

exactly the same as the one for an 𝐻 arrival.

Having the above coupling, we finish the proof by induction: The base case 𝑘 = 0 is trivial:

𝐻
𝒞(𝑑)
0 = 𝐻

𝒞(𝑑)
0 = 0. Suppose 𝐻𝒞(𝑑)

𝑘 ≤ 𝐻
𝒞(𝑑)
𝑘 holds for 𝑘, we show that it also holds for 𝑘+1: if

an 𝐻/𝐸 arrival does not start a chain-segment then by coupling construction 𝐻𝒞(𝑑)
𝑘+1 ≤ 𝐻

𝒞(𝑑)
𝑘+1 .

If an 𝐻 arrival does start a chain-segment then we are either in Case (1a) or (1b). In the

former the length of the chain-segment in 𝒞(𝑑) was not even long enough to bring the number

of 𝐻 agents back to 𝐻𝒞(𝑑)
𝑘 = ℎ; therefore 𝐻𝒞(𝑑)

𝑘+1 ≤ 𝐻
𝒞(𝑑)
𝑘+1 holds. In the latter case, again by

coupling construction 𝐿𝐻
[ℎ,𝑒] ≥ 𝑆ℎ+(ℎ̃−ℎ), which implies that 𝐻𝒞(𝑑)

𝑘+1 ≤ 𝐻
𝒞(𝑑)
𝑘+1 holds. A similar

argument holds if an 𝐸 arrival starts a chain-segment.

The next proposition computes E[𝐻𝒞(𝑑)] in the limit. Together with Lemma 3, this

completes the proof of Theorem 5.

Proposition 6. Under 𝒞(𝑑) and in steady-state, the expected number of 𝐻 agents satisfies:

lim
𝑝𝐻→0

𝑝𝐻E[𝐻𝒞(𝑑)] = ln

(︂
1 +

𝜆𝐻
𝜆𝐸(1− (1− 𝑝𝐸)𝑑)

)︂
.

28This case is only defined here for the sake of completeness, the induction will ensure that this never
happens.
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Proof. Let 𝜋 be the steady-state probability distribution. By the conservation of flow from

state ℎ to ℎ+ 1, we have:

𝜋(ℎ)𝜆𝐻(1− 𝑝𝐻)𝑑 =
∑︁
𝑘≥1

𝜋(ℎ+ 𝑘)

(︃∑︁
𝑖≤ℎ

𝑄𝒞(𝑑)(ℎ+ 𝑘, 𝑖)

)︃
.

Note that
∑︀

𝑖≤ℎ𝑄
𝒞(𝑑)(ℎ+ 𝑘, 𝑖) is the total leftward flow starting from state ℎ+ 𝑘 and ending

at state 𝑖 ≤ ℎ. Using (5.8) and (5.9), we have:

∑︁
𝑖≤ℎ

𝑄𝒞(𝑑)(ℎ+ 𝑘, 𝑖) = ΛP[𝑆ℎ+𝑘 ≥ 𝑘],

and therefore,

𝜋(ℎ)𝜆𝐻(1− 𝑝𝐻)𝑑 = Λ
∑︁
𝑘≥1

𝜋(ℎ+ 𝑘)P[𝑆ℎ+𝑘 ≥ 𝑘]. (5.11)

Observe that applying Definition (5.9), we have P[𝑆ℎ+𝑘 ≥ 𝑘] = P[𝑆ℎ+𝑘 ≥ 𝑘 − 1]P[𝑆ℎ+1 ≥ 1].

Therefore we can rewrite (5.11) as:

𝜋(ℎ)𝜆𝐻(1− 𝑝𝐻)𝑑 = Λ

(︃
𝜋(ℎ+ 1)P[𝑆ℎ+1 ≥ 1] + P[𝑆ℎ+1 ≥ 1]

∑︁
𝑘≥2

𝜋(ℎ+ 𝑘)P[𝑆ℎ+𝑘 ≥ 𝑘 − 1]

)︃
.

(5.12)

Similarly we write the conservation of flow from state ℎ+ 1 to ℎ+ 2:

𝜋(ℎ+ 1)𝜆𝐻(1− 𝑝𝐻)𝑑 = Λ
∑︁
𝑘≥1

𝜋(ℎ+ 1 + 𝑘)P[𝑆ℎ+𝑘+1 ≥ 𝑘] (5.13)

= Λ
∑︁
𝑘′≥2

𝜋(ℎ+ 𝑘′)P[𝑆ℎ+𝑘′ ≥ 𝑘′ − 1],

where the last step follows from a change of variable 𝑘′ = 𝑘+1. Note that the summation in

the RHS of (5.13) also appears in the second term of RHS of (5.12). Substituting
∑︀

𝑘′≥2 𝜋(ℎ+

𝑘′)P[𝑆ℎ+𝑘′ ≥ 𝑘′ − 1] with 𝜋(ℎ+ 1)𝜆𝐻(1− 𝑝𝐻)𝑑/Λ in (5.12) gives that

138



𝜋(ℎ)𝜆𝐻(1− 𝑝𝐻)𝑑 = 𝜋(ℎ+ 1)P[𝑆ℎ+1 ≥ 1]
(︀
Λ + 𝜆𝐻(1− 𝑝𝐻)𝑑

)︀
. (5.14)

We can now compute E[𝐻𝒞(𝑑)] by proving an upper and lower bound separately. We use

the fact that for states far enough from the expectation, the distribution decays geometrically.

We start with the upper-bound. Let 𝜂 = ln
(︁
1 + 𝜆𝐻

𝜆𝐸(1−(1−𝑝𝐸)𝑑)

)︁
/𝑝𝐻+1/

√
𝑝𝐻 . We know from

(5.9) that P[𝑆ℎ+1 ≥ 1] = 1− (1− 𝑝𝐻)ℎ+1. This implies that for ℎ ≥ 𝜂,

P[𝑆ℎ+1 ≥ 1] ≥ 1− (1− 𝑝𝐻)𝜂+1

= 1− 𝑒(𝜂+1) ln(1−𝑝𝐻)

= 1− 𝜆𝐸(1− (1− 𝑝𝐸)𝑑)
𝜆𝐻 + 𝜆𝐸(1− (1− 𝑝𝐸)𝑑)

(1−√𝑝𝐻) + 𝑜(𝑝𝐻),

where we used the Taylor expansion ln(1− 𝑥) = −𝑥− 𝑥2/2− 𝑥3/3− . . ..

Using (5.14) for ℎ ≥ 𝜂, we have:

𝜋(ℎ+ 1)

𝜋(ℎ)
=

𝜆𝐻(1− 𝑝𝐻)𝑑

P[𝑆ℎ+1 ≥ 1] (Λ + 𝜆𝐻(1− 𝑝𝐻)𝑑)

≤ 𝜆𝐻(1− 𝑝𝐻)𝑑

𝜆𝐻 + 𝜆𝐸(1− (1− 𝑝𝐸)𝑑)
√
𝑝𝐻

+ 𝑜(
√
𝑝𝐻)

= 1− 𝑐√𝑝𝐻 + 𝑜(
√
𝑝𝐻) =: 𝛿,

(5.15)

where 𝑐 = 𝜆𝐸(1−(1−𝑝𝐸)𝑑)
𝜆𝐻

. Having (5.15), we upper bound E[𝐻𝒞(𝑑)] as follows:
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E[𝐻𝒞(𝑑)] =
∑︁

ℎ≤𝜂+𝑝
−3/4
𝐻

𝜋(ℎ) +
∑︁

ℎ≥𝜂+𝑝
−3/4
𝐻 +1

𝜋(ℎ)

≤ 𝜂 + 𝑝
−3/4
𝐻 + 𝜋(𝜂)

𝛿𝑝
−3/4
𝐻 +1

(1− 𝛿)

=
ln
(︁
1 + 𝜆𝐻

𝜆𝐸(1−(1−𝑝𝐸)𝑑)

)︁
𝑝𝐻

+ 𝑜(1/𝑝𝐻).

Similarly we lower bound E[𝐻𝒞(𝑑)]: let 𝜂 = ln
(︁
1 + 𝜆𝐻

𝜆𝐸(1−(1−𝑝𝐸)𝑑)

)︁
/𝑝𝐻 − 1/

√
𝑝𝐻 , we can find

𝑐 such that for ℎ ≤ 𝜂:
𝜋(ℎ)

𝜋(ℎ+ 1)
≤ 1− 𝑐√𝑝𝐻 + 𝑜(

√
𝑝𝐻)

The above inequality combined with Markov inequality enables us to lower bound E[𝐻𝒞(𝑑)]

as follows:

E[𝐻𝒞(𝑑)] ≥ (𝜂 − 𝑝−3/4
𝐻 )

⎛⎝1−
𝜂−𝑝

−3/4
𝐻∑︁

ℎ=0

𝜋(ℎ)

⎞⎠ =
ln
(︁
1 + 𝜆𝐻

𝜆𝐸(1−(1−𝑝𝐸)𝑑)

)︁
𝑝𝐻

+ 𝑜(1/𝑝𝐻).

Finally, note in the special case 𝑝𝐸 = 1, an arriving 𝐸 agent is matched immediately by a

bridge agent, implying that 𝐸𝒞(𝑑)
𝑡 = 0 and 𝐻𝒞(𝑑)

𝑡 = 𝐻
𝒞(𝑑)
𝑡 ; consequently Proposition 6 implies

the limit stated in Proposition 2.

5.6 Final comments

In matching markets where monetary transfers are not allowed, exogenous thickness increases

exchange opportunities [102]. Using a simple dynamic model with heterogeneous agents

we find a tight connection between market thickness and the desired matching technology;

matching through chains is significantly more efficient than (simple) bilateral matching only

when the market is sufficiently thin. Furthermore, increasing the arrival rate of hard-to-
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match agents may have, under bilateral matching, an adverse effect on such agents.

An important dynamic matching market is kidney exchange, which enables incompatible

patient-donor pairs to exchange donors. While our stylized model abstracts away from

many details in this market, our findings may provide some useful insights to policy issues.

When merging markets, which is an ongoing effort in various countries (see Section 1.2.1),

or attracting different types of pairs, there may be negative effects on some pairs. This

effect is well known for pairs with O patients and non-O donors who compete to match

with scarce O donors in the pool [107]; our findings suggest that this negative effect extends

also to blood-type compatible pairs (like O-O), many of which have very highly sensitized

patients. Understanding these externalities are a key step towards aligning incentives towards

cooperation between the relevant players [13]. Our findings further provide some insights

about tradeoffs from prioritizing different types of pairs.

Next we discuss some limitations and possible extensions. One interesting challenge is to

quantify the exact loss from restricting attention to myopic policies that do not wait before

matching, rather than finding the optimal Markovian policy that may make some agents

wait in order to increase matching opportunities.
29 Another interesting direction is to extend the model to allow departures.30 Finally,

our focus has been on marketplaces, in which any pair of agents have a non-zero probability

of forming a match. We found that the composition of the market crucially impacts the

efficiency of the market. An interesting direction for future research would be to extend

this study to two-sided marketplaces, in particular explore what features determine waiting

times; for example, whether it is more beneficial to be on the short side or have a large ex

ante match probability.

29Similar to [8] we can show our policies achieve the same scaling as the best anonymous Markovian policy
(see Proposition 21 in Appendix B.8) but characterising the best constants is an open question.

30For example, [4] allow agents to depart prior to being matched and consider the match rate as the
measure for efficiency.
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Part II

Beyond Myopic Policies: Algorithms for

Stochastic and Worst Case Graphs
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Chapter 6

Maximizing Efficiency in Dynamic

Matching Markets
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6.1 Introduction

We study the problem of matching agents who arrive to a marketplace over time and leave

after a short period. Agents can only be matched while they are present in the marketplace.

There is a different value for matching every pair of agents, which does not vary over time.

The planner’s goal is to maximize the total value over a given finite time horizon.

Several marketplaces face a such a problem. Ride-hailing platforms have to match passen-

gers with drivers, in which case the value of a match may depend on to the distance between

the driver and the passenger. Such platforms may also carpool passengers and hence match

passengers with each other, in which case the value of a match can represent the reduction

in total distance traveled by the two matched passengers, compared to the distance traveled

in individual rides. Kidney exchange platforms face the problem of matching incompatible

patient-donor pairs with each other. In this context the value of a match can represent, for

example, the quality adjusted life years due to the transplant. The common challenge in all

these applications comes from the uncertainty associated with future arrivals and potential

future matches.

We study matching algorithms that perform well across any sequence of arrivals, when

there is no a priori information about the match values or arrival times. The underlying

graph structure may be arbitrary and is not necessarily bipartite. Agents can be matched

at any moment between their arrival and their departure. In that sense, our framework

differs from the classic online matching literature where matching decisions have to be made

immediately upon the arrival of an agent.

One important assumption we make is that each agent departs from the market exactly

𝑑 time periods after her arrival. In the case of the carpooling application one may think

of 𝑑 as a (self-imposed) service requirement, which ensures that no passenger waits for too

long before being matched. In that case, after 𝑑 periods the passenger is assigned to an

individual ride. Later on, we relax this assumption to allow for stochastic departures. It is

worth noting that when departure times are allowed to be arbitrary, the competitive ratio

of any algorithm is unbounded.
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Contributions

Next we describe our basic graph-theoretic model and contributions. Time is discrete and

one vertex of a given graph arrives at each time period. Every edge has a non-negative

weight, representing the reward from matching these two vertices. A vertex cannot match

more than 𝑑 periods after its arrival; after 𝑑 units of time the vertex becomes critical and

departs. It is helpful to think of 𝑑 as a service quality set by the platform and a passenger

is assigned to a single ride after waiting for 𝑑 periods of time.

The goal is to find a weighted matching with a large total weight in an online manner.

This means that the decision for every vertex has to be made no later than 𝑑 periods after

its arrival (this differs from the classic online bipartite matching literature, in which 𝑑 = 0).

There is no a priori information about weights or arrival times and the underlying graph

may be arbitrary and hence non-bipartite.

Our first results are given in a setting, in which the vertices arrive in an adversarial

order. We introduce for this setting a 1/4-competitive algorithm, termed Postponed Greedy

(PG). We further show that no algorithm achieves a competitive ratio that is higher than

1/2.

The key idea behind PG is to look at a virtual bipartite graph, in which each vertex is

duplicated into a “buyer” and a “seller” copy. We enforce that the seller copy does not match

before the vertex becomes critical. This enables us to postpone the matching decision until

we have more information about the graph structure and the likely matchings. We then

proceed in a manner similar to [55]: tentatively match each new buyer copy to the seller

that maximizes its margin, i.e., the difference between edge weight, and the value of the

seller’s current match.

We extend the model to the case where the departure of vertices are determined stochas-

tically. We show that when the departure distribution is memoryless and realized departure

times are revealed to the algorithm just as becoming critical, one can adapt the PG algo-

rithm to achieve a competitive ratio of 1/8. It is worth noting that when departure times are

chosen in an adversarial manner no algorithm can achieve a constant competitive ratio.
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Related literature

There is a growing literature related to ride-sharing. Santi et al. [113] finds that about 80%

of rides in Manhattan could be shared by two passengers. Many studies focus on rebalancing

or dispatching problems without pooling, e.g., Banerjee et al. [24], Pavone et al. [97], Santi

et al. [113], Spieser et al. [121], Zhang and Pavone [134]. Alonso-Mora et al. [6] studies

real-time high-capacity ride-sharing. It does not consider, however, a graph-theoretic online

formulation for matching rides.

This paper is closely related to the online matching literature. In the classic problem,

introduced in Karp et al. [72], the graph is bipartite with vertices on one side waiting, while

others are arriving sequentially and have to be matched immediately upon arrival. This

work has numerous extensions, for example to stochastic arrivals and in the adwords context

[54, 61, 67, 81, 83]. See [82] for a detailed survey. Our contributes to this literature in three

ways. First, we provide algorithms that perform well on edge-weighted graphs. Second, our

graph can be non-bipartite, which is the case in ride-sharing and kidney exchange. Third,

all vertices can arrive over time and may remain for some given time until they are matched.

Closely related is Huang et al. [66], which studies a similar model to ours in the non-weighted

case, but allow departure times to be adversarial.

Several papers consider the problem of dynamic matching in the edge-weighted case.

Feldman et al. [55] find that in the classic online bipartite setting, no algorithm achieves a

constant approximation. They introduce a free disposal assumption, which allows to discard

a matched vertex in favor of a new arriving vertex. They find, based on an algorithm by

Lehmann et al. [75], that a greedy algorithm that matches a vertex to the highest marginal

vertex, is 0.5-competitive. We build on this result for a special classes of bipartite graphs. In

the adversarial setting Ashlagi et al. [16], Emek et al. [53] study the problem of minimizing

the sum of distances between matched vertices and the sum of their waiting times. In their

model no vertex leaves unmatched and our model does not account for vertices’ waiting

times. Few papers consider the stochastic environment [22, 65, 95]. These papers find that

some waiting before matching is beneficial for improving efficiency.
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Related to our work are some papers on job or packet scheduling. Jobs arrive over

online to a buffer, and reveal upon arrival the deadline by which they need to be scheduled.

The algorithm can schedule at most one job per time and the value of scheduling a job is

independent from the time slot. Constant approximation algorithms are given by Chin et al.

[36] and Li et al. [77].

Finally, there is a growing literature that focuses on dynamic matching motivated from

kidney exchange [9, 18, 46, 126]. These papers focus mostly on random graphs with no

weights. Closer to our paper is [5], which finds that in a sparse random graph, knowledge

about the departure time of a vertex is beneficial and matching a vertex only when it becomes

critical performs well. Our work differs from these papers in two ways: we consider the edge-

weighted case, and, we make no assumption on the graph structure.

6.2 Model

Consider a weighted graph 𝐺 with 𝑛 vertices indexed by 𝑖 = 1, . . . 𝑛. Vertices arrive sequen-

tially over 𝑛 periods and let 𝜎(𝑖) denote the arrival time of vertex 𝑖. Let 𝑣𝑖𝑗 ≥ 0 denote the

weight on the undirected edge (𝑖, 𝑗) between vertices 𝑖 and 𝑗.

For vertices 𝑖 and 𝑗 with 𝜎(𝑖) < 𝜎(𝑗), the weight 𝑣𝑖𝑗 on the edge between 𝑖 and 𝑗 is

observed only after vertex 𝑗 has arrived.

For 𝑑 ≥ 1, the online graph with deadline 𝑑, denoted by 𝐺𝑑,𝜎, has the same vertices

as 𝐺, and the edge between 𝑖 and 𝑗 in 𝐺 exists if an only if |𝜎(𝑖)− 𝜎(𝑗)| ≤ 𝑑. We say that

𝑖 becomes critical at period 𝜎(𝑖) + 𝑑, at which time the online algorithm needs to either

match it and collect the associated edge weight, or let it depart from the graph.

In this Chapter, we study the Adversarial Order (AO) setting, i.e. we assume that the

order of arrivals is chosen by the adversary: 𝜎(𝑖) = 𝑖. In Chapter 7, we will study a similar

model in the Random Order (RO) setting, where we assume that 𝜎 is sampled uniformly at

random among all possible permutations 𝑆𝑛 of [1, 𝑛].

The goal is to find an online algorithm that generates a matching with high total weight.

More precisely, we seek to design a randomized online algorithm that obtains in expectation
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a high fraction of the expected maximum-weight of a matching over 𝐺𝑑,𝜎.

To illustrate a natural tradeoff, consider the example in Figure 6-1 for 𝑑 = 1. At period

2 the planner can either match vertices 1 and 2 or let vertex 1 remain unmatched. This

simple example shows that no deterministic algorithm can obtain a constant competitive

ratio. Furthermore, no algorithm can achieve a competitive ratio higher than 1/2.

1 2 3

𝑣1,2 = 1 𝑣2,3 = 𝑦

Figure 6-1: Let 𝑑 = 1. Therefore, there is no edge between vertices 1 and 3. The algorithm
needs to decide whether to match 1 with 2 and collect 𝑣1,2 without knowing 𝑦.

The example in Figure 6-1 illustrates a necessary condition for the algorithm to achieve

a constant competitive ratio: with some probability, vertex 2 needs to forgo the match with

vertex 1. We ensure this property by assigning every vertex to be either a seller or a buyer.

We then prevent sellers from matching before they become critical, while we allow buyers to

be matched at any time.

It will be useful to first study a special case, in which the underlying graph 𝐺 is bipartite,

with sellers on one side and buyers and in the online graph a buyer and a seller cannot match

if the buyer arrives before the seller. For such online graphs we show that a greedy algorithm

given by Feldman et al. [55] is 0.5-competitive. We then build on this algorithm to design a

randomized 1/4-competitive algorithm for arbitrary graphs.

6.3 Main Results

6.3.1 An algorithm for bipartite constrained online graphs

Let 𝐺 be a bipartite graph and 𝜎 be the order of arrivals. The online graph 𝐺𝑑,𝜎 is called

constrained bipartite if for every seller 𝑠 and every buyer 𝑏, there is no edge between 𝑠

and 𝑏 if 𝜎(𝑏) < 𝜎(𝑠), i.e. 𝑏 and 𝑠 cannot match if 𝑏 arrives before 𝑠.
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Consider the following greedy algorithm, which attempts to match buyers in their arriving

order. An arriving buyer 𝑏 is matched to the seller with the highest marginal value if the

marginal value is positive. If the seller is already matched to another buyer 𝑏′, 𝑏′ becomes

unmatched and never gets matched again. Formally:

Algorithm 2 Greedy algorithm (Feldman et al. [55])

∙ Input: constrained bipartite graph, 𝐺𝑑,𝜎.

∙ For each arrival 𝑖 = 1, . . . , 𝑛:

– If 𝑖 is a seller, initialize 𝑝(𝑖) = 0, and 𝑚(𝑠) = ∅.
– If 𝑖 is a buyer:

* Set 𝑠 ∈ argmax𝑠′∈𝑆{𝑣𝑖𝑠′ − 𝑝(𝑠′)}.
* If 𝑣𝑖𝑠 − 𝑝(𝑠) > 0, set 𝑚(𝑠) = 𝑖 and set 𝑝(𝑠) = 𝑣𝑖𝑠.

∙ When a seller 𝑠 becomes critical: match it to 𝑏 = 𝑚(𝑠) if 𝑚(𝑠) ̸= ∅.

Proposition 7 (Feldman et al. [55]). The greedy algorithm is 0.5-competitive for online

bipartite constrained graphs.

Feldman et al. [55] prove that this algorithm is 0.5-competitive for an online matching

problem with free disposal. In their setting all seller exists and buyer arrive one at a time.

The algorithm provides the same guarantees for constrained bipartite graph since, by con-

struction, there is no harm in assuming that all sellers exist rather than arriving over time.

The key behind the proof is that the value 𝑝(𝑠) function for each seller 𝑠 is submodular. In

fact the result is a special case of a result by Lehmann et al. [75], who study combinatorial

auctions with submodular valuations.

6.3.2 An algorithm for arbitrary graphs

In this section we extend the greedy algorithm for constrained bipartite graphs to arbitrary

graphs. A naive way to generate a online constrained bipartite graph from an arbitrary one

is to randomly assign each vertex to be either a seller or a buyer, independently and with
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probability 1/2. Then only keep the edges between each buyer and all the sellers who arrived

before her. Formally:

Algorithm 3 Naive Greedy

∙ Input: an online graph with deadline 𝑑, 𝐺𝑑,𝜎.

∙ For each vertex 𝑡 = 1, . . . , 𝑛:

Toss a fair coin to decide whether 𝑖 is a seller or a buyer. Construct the online
constrained bipartite graph �̃�(𝑑, 𝜎) by keeping only the edges between each buyer
and the sellers who arrived before her.

∙ Run the Greedy algorithm on �̃�(𝑑, 𝜎).

Corollary 4. The naive greedy algorithm is 1/8-competitive for arbitrary online graphs.

Observe that for vertices 𝑖, 𝑗 with 𝜎(𝑖) < 𝜎(𝑗), edge (𝑖, 𝑗) in the original graph remains

in the generated constrained bipartite graph with probability 1/4 (if 𝑖 is a seller and 𝑗 is a

buyer). We then use proposition 7 to prove that naive greedy is 1/8-competitive.

One source of inefficiency in the naive greedy algorithm is that the decision whether a

vertex becomes a seller or a buyer is done independently at random and without taking

the graph structure into consideration. We next introduce the Postponed Greedy algorithm

that defers these decisions as long as possible in order to construct the constrained bipartite

graph more carefully.

When a vertex 𝑘 arrives, we add two copies of 𝑘 to a virtual graph: a seller 𝑠𝑘 and a

buyer 𝑏𝑘. Let 𝑆𝑡 and 𝐵𝑡 be the set of sellers and buyers at arrival time 𝑡. On arrival, seller

𝑠𝑘 does not have any edges, and buyer 𝑏𝑘 has edges towards any vertex 𝑠𝑙 ∈ 𝑆𝑘 with value

𝑣𝑙,𝑘. Then we run the greedy algorithm with the virtual graph as input. When a vertex

𝑘 becomes critical, 𝑠𝑘 becomes critical in the virtual graph, and we compute its matches

generated by greedy.

Both 𝑠𝑘 and 𝑏𝑘 can be matched in this process. If we were to honor both matches, the

outcome would correspond to a 2-matching, in which each vertex has degree at most 2. Now
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observe that because of the structure of the constrained bipartite graph, this 2-matching

does not have any cycles; it is just a collection of disjoint paths. We decompose each path

into two disjoint matchings and choose each matching with probability 1/2.

In order to do that, the algorithm must determine, for each original vertex 𝑘, whether

the virtual buyer 𝑏𝑘 or virtual seller 𝑠𝑘 will be used in the final matching. We say that 𝑘 is

a buyer or seller depending on which copy is used. We say that vertex 𝑘 is undetermined

when the algorithm has not yet determined which virtual vertex will be used. When an

undetermined vertex becomes critical, the algorithm flips a fair coin to decide whether to

match according to the buyer or seller copy. This decision is then propagated to the next

vertex in the 2-matching: if 𝑘 is a seller then the next vertex will be a buyer and vice-versa.

That ensures that assignments are correlated and saves a factor 2 compared to uncorrelated

assignments in the naive greedy algorithm.

Algorithm 4 Postponed Greedy (PG)

∙ Input: an online graph with deadline 𝑑, 𝐺𝑑,𝜎.

∙ Process events at time 𝑡 in the following way:

1. Arrival of a vertex 𝑘:

(a) Set 𝑘’s status to be undetermined.
(b) Add a virtual seller: 𝑆𝑡 ← 𝑆𝑡−1 ∪ {𝑠𝑘}, 𝑝(𝑠𝑘)← 0 and 𝑚(𝑠𝑘) = ∅.
(c) Add a virtual buyer: 𝐵𝑡 ← 𝐵𝑡−1 ∪ {𝑏𝑘}.
(d) Find a virtual seller for the virtual seller: 𝑠 = argmax𝑠′∈𝑆𝑡

𝑣𝑠′,𝑏𝑘 − 𝑝(𝑠′).
(e) Match if marginal utility is positive: If 𝑣𝑠,𝑏𝑘−𝑝(𝑠) > 0, then tentatively match

𝑏𝑘 to 𝑠 by setting 𝑚(𝑠)← 𝑏𝑘 and 𝑝(𝑠)← 𝑣𝑠,𝑏𝑘 .

2. Vertex 𝑘 becomes critical:

(a) Proceed if no match found: If 𝑚(𝑠𝑘) = ∅, do nothing.
(b) match in the virtual graph: If 𝑚(𝑠𝑘) = 𝑏𝑙. Set 𝑆𝑡 ← 𝑆𝑡 ∖ {𝑠𝑘}, and 𝐵𝑡 ←

𝐵𝑡 ∖ {𝑏𝑙}.
(c) If 𝑘’s status is undetermined, w.p 1/2 set it to be either seller or buyer.

i. If 𝑘 is a seller: finalize the matching of 𝑘 to 𝑙 and collect the reward 𝑣𝑘,𝑙.
Set 𝑙’s status to be a buyer.

ii. If 𝑘 is a buyer: Set 𝑙’s status to be a seller.

151



Theorem 6. The postponed greedy (PG) algorithm is 1/4-competitive for arbitrary online

graphs.

Proof. Fix a vertex 𝑘, and denote 𝑝𝑓 (𝑠𝑘) to be the final value of its virtual seller 𝑠𝑘’s match.

If 𝑘’s status is a seller in step (2.c.i), then we collect 𝑝𝑓 (𝑠𝑘). Note that this happens with

probability exactly 1/2 for every 𝑘.

PG = E

[︃ ∑︁
𝑘 is a seller

𝑝𝑓 (𝑠𝑘)

]︃
=

1

2

∑︁
𝑘∈[1,𝑇 ]

𝑝𝑓 (𝑠𝑘).

For a virtual buyer 𝑏 arriving at time 𝑡, let 𝑞(𝑏) = max𝑠∈𝑆𝑡 𝑣𝑠𝑏 − 𝑝(𝑠) be the margin

for 𝑏 in step (1.d). Note that every increase in a virtual seller’s price corresponds to a

virtual buyer’s margin. Using the notation 𝑆 = ∪𝑡𝑆𝑡 and 𝐵 = ∪𝑡𝐵𝑡, this implies that∑︀
𝑠∈𝑆 𝑝

𝑓 (𝑠) =
∑︀

𝑏∈𝐵 𝑞(𝑏).

The dual of the offline matching problem linear programs can be written as:

minimize
∑︁

𝑘∈[1,𝑇 ]

𝜆𝑘

subject to 𝑣𝑘𝑙 ≤ 𝜆𝑘 + 𝜆𝑙 ∀(𝑘, 𝑙) s.t. |𝑘 − 𝑙| ≤ 𝑑

𝜆𝑘 ≥ 0.

(Offline Dual)

Let 𝑖 and 𝑗 > 𝑖 be two vertices with 𝑗−𝑖 ≤ 𝑑. When 𝑗 arrives, we have 𝑞(𝑏𝑗) ≥ 𝑣𝑖𝑗−𝑝(𝑠𝑖).

Together with the fact that 𝑝(𝑠) increases over time, this implies that {𝑝𝑓 (𝑠𝑘) + 𝑞(𝑏𝑘)}𝑘∈[1,𝑇 ]

is a feasible solution to (Offline Dual).

We can conclude that OFF ≤
∑︀

𝑘 𝑝
𝑓 (𝑠𝑘) + 𝑞(𝑏𝑘) = 2

∑︀
𝑘 𝑝

𝑓 (𝑠𝑘) = 4PG.

6.3.3 Lower bounds

Claim 1. When the input is a constrained bipartite graph:

- No deterministic algorithm can obtain a competitive ratio above
√
5−1
2
≈ 0.618.

- No randomized algorithm can obtain a competitive ratio above 4
5
.
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1 2 3 4

1

(
√
5−1)/2

𝑥 = 1 or 0

1 2 3 4

1

1/2

𝑥 = 1 or 0

Figure 6-2: Bipartite graph where 𝑆 = {1, 2} and 𝐵 = {3, 4}, with 𝑑 = 2: vertex 1 becomes
critical before 4 arrives. The adversary is allowed to choose edge (2, 4) to be either 1 or 0.
Left: instance for the deterministic case. Right: instance for the randomized case.

Proof. Deterministic algorithm: Consider the example on the left of Figure 6-2. When

seller 1 becomes critical, the algorithm either matches her with buyer 3, or lets 1 departs

unmatched. The adversary then chooses 𝑥 accordingly. Thus the competitive ratio cannot

exceed:

max

(︃
min

𝑥∈{0,1}

√
5−1
2

+ 𝑥

max(
√
5−1
2

+ 𝑥, 1)
, min
𝑥∈{0,1}

1

max(
√
5−1
2

+ 𝑥, 1)

)︃
=

√
5− 1

2
.

Randomized algorithm: Consider the example on the right of Figure 6-2. Similarly

to the deterministic case, when seller 1 becomes critical, the algorithm decides to match her

with 3 with probability 𝑝. The adversary then chooses 𝑥 accordingly. Thus the competitive

ratio cannot exceed:

max
𝑝∈[0,1]

min
𝑥∈{0,1}

𝑝(1/2 + 𝑥) + (1− 𝑝)
max(1/2 + 𝑥, 1)

= 4/5.

Next we show that our analysis for PG is tight.

Claim 2. There exists a constrained bipartite graph for which PG is 1/(4−2𝜖) -competitive.

Proof. Consider the input graph in Figure 6-3. Vertex 2 will be temporarily matched with

3, and vertex 1 will depart unmatched. When 2 becomes critical, with probability 1/2, she
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1 2 3 4

1

1− 𝜖

1

Figure 6-3: Bipartite graph where 𝑆 = {1, 2} and 𝐵 = {3, 4}, with 𝑑 = 2: vertex 1 becomes
critical before 4 arrives. Dotted edges represent edges that are not know to the algorithm
initially.

will be determined to be a buyer and will depart unmatched. Therefore the PG collects in

expectation 1/2 while the offline algorithm collects 2− 𝜖.

6.4 Extensions

6.4.1 Stochastic departures in the adversarial order setting

We relax the assumption that all vertices depart after exactly 𝑑 time steps.

We therefore focus on the stochastic case, in which the departure time 𝑑𝑖 of vertex 𝑖 is

sampled independently from a distribution 𝒟. We assume that the realizations 𝑑𝑖 are only

known at the time 𝑖 becomes critical.

Proposition 8. Suppose that there exists 𝛼 ∈ (0, 1) such that 𝒟 satisfies the property that

for all 𝑖 < 𝑗,

P[𝑖+ 𝑑𝑖 ≤ 𝑗 + 𝑑𝑗|𝑖+ 𝑑𝑖 ≥ 𝑗] ≥ 𝛼.

Then PG is 𝛼/4-competitive.

Proof. When a vertex 𝑘 becomes critical in the original graph, we match it if its status is

determined to be seller. In that case, we need to ensure that its tentative match 𝑏𝑙 is still

present. With probability at least 𝛼, vertex 𝑙 is still present, and we collect 𝑝(𝑠𝑘). The rest

of the proof follows similarly to that of Theorem 6
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Corollary 5. PG is 1/8-competitive when 𝒟 is memoryless.

6.4.2 Dynamic deferred acceptance (DDA) algorithm

In this section we provide a new algorithm, called Dynamic Deferred Acceptance. Although

the DDA provides the same theoretical guarantees as greedy, we present it here since it

may lead to better results in practice. Loosely speaking it rationalizes a reoptimization-like

algorithm by keeping a tentative maximum weighted matching.

Observe that the greedy algorithm discards a buyer that becomes unmatched and there-

fore does not attempt to rematch it. We introduce the Dynamic Deferred Acceptance (DDA)

algorithm, which takes as input a constrained bipartite graph and returns a matching (for-

mally presented below). The main idea is to maintain a tentative maximum-weight matching

𝑚 at all times during the run of the algorithm. This tentative matching is updated accord-

ing to an auction mechanism: at each time 𝑡, every seller 𝑠 is associated with a price 𝑝𝑠(𝑡),

which is initiated at zero upon arrival. Similarly, every buyer 𝑏 that that already arrived

and yet to become critical is associated with a profit margin 𝑞𝑏(𝑡) which corresponds to the

value of matching to their most preferred seller minus the price associated with that seller.

Every time a new buyer arrives, she bids on her most preferred seller at the current set of

prices. This triggers a bidding (or auction) process that terminates when no unmatched

buyer can profitably bid on a seller. The auction phase is always initiated at the existing

prices and profit margins. This, together with the fact that the graph is bipartite, ensures

that prices never decrease and and marginal profits never increase throughout the algorithm.

Furthermore, the prices and marginal profits of the sellers and buyers that are present in

the “market” form an optimum dual for the matching linear program (see Appendix C.1 for

more details).

A tentative match between a buyer and a seller is realized (and the buyer and seller

leave) only once the seller becomes critical, i.e., she has been present for 𝑑 time periods and

is about to become critical. At that time, the seller and the buyer are considered matched

and depart. This ensures that sellers never get matched before they become critical. A buyer
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is discarded only if she is unmatched and becomes critical.

Formally, Algorithm 5 provides the procedure for DDA. At any point 𝑡 throughout the

algorithm, we maintain a set of sellers 𝑆𝑡, a set of buyers 𝐵𝑡, as well as a matching 𝑚, a

price 𝑝𝑠(𝑡) for every seller 𝑠 ∈ 𝑆𝑡, and a marginal profit 𝑞𝑏(𝑡) for every buyer 𝑏 ∈ 𝐵𝑡.

Algorithm 5 Dynamic Deferred Acceptance

∙ Input: an online graph with deadline 𝑑, 𝐺𝑑,𝜎.

∙ Process each event in the following way:

1. Arrival of a seller s: Initialize 𝑝𝑠 ← 0 and 𝑚(𝑠)← ∅.
2. Arrival of a buyer 𝑏: Start the following ascending auction.

Repeat

(a) Let 𝑞𝑏 ← max𝑠′∈𝑆𝑡 𝑣𝑠′,𝑏 − 𝑝𝑠′ and 𝑠← argmax𝑠′∈𝑆𝑡
𝑣𝑠′,𝑏 − 𝑝𝑠′ .

(b) If 𝑞𝑏 > 0 then
i. 𝑝𝑠 ← 𝑝𝑠 + 𝜖.
ii. 𝑚(𝑠)← 𝑏 (tentatively match 𝑠 to 𝑏)
iii. Set 𝑏 to ∅ if 𝑠 was not matched before. Otherwise, let 𝑏 be the previous

match of 𝑠.

Until 𝑞𝑏 ≤ 0 or 𝑏 = ∅.
3. Departure of a seller s: If seller 𝑠 becomes critical and 𝑚(𝑠) ̸= ∅, finalize the

matching of 𝑠 and 𝑚(𝑠) and collect the reward of 𝑣𝑠,𝑚(𝑠).

The ascending auction phase in our algorithm is similar to the auction algorithm by

[26]. Prices (for overdemanded sellers) in this auction increase by 𝜖 to ensure termination,

and optimality is proven through 𝜖-complementary slackness conditions. For the simplicity of

exposition we presented the auction algorithm but for the analysis, we consider the limit 𝜖→

0 and assume the auction phase terminates with the maximum weight matching. Another

way to update the matching is through the Hungarian algorithm [74], where prices are

increased simultaneously along an alternating path that only uses edges for which the dual

constraint is tight.

Lemma 4. Consider the DDA algorithm on a constrained bipartite graph.
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1. Throughout the algorithm, prices corresponding the sellers never decrease and the profit

margins of buyers never increase.

2. At the end of every ascending auction, prices of the sellers and the marginal profits

of the buyers form an optimal solution to the dual of the matching linear program

associated with buyers and sellers present at that particular time.

Maintaining a maximum-weight matching along with optimum dual variables does not

guarantee an efficient matching for the whole graph. The dual values are not always feasible

for the offline problem. Indeed, the profit margin of some buyer 𝑏 may decrease after some

seller departs the market. This is because 𝑏 may face increasing competition from new

buyers, while the bidding process excludes sellers that have already departed the market

(whether matched or not).

Proposition 9. DDA is 1/2-competitive for constrained bipartite graphs.

Proof sketch. The proof relies on a primal-dual argument. For any arriving buyer 𝑏 we denote

by 𝑞𝑖𝑏 her initial profit margin, i.e. her margin after the ascending auction terminates, and

before any other vertex arrives. When a buyer 𝑏 is matched or departs, we set 𝑞𝑓𝑏 to be her

final profit margin at that time. Similarly when a seller 𝑠 departs or is matched, we denote

by 𝑝𝑓𝑠 her final price at that time.

The proof of the proposition relies on the following three ingredients. First, letting

𝑆 = ∪𝑡∈[1,𝑇 ]𝑆𝑡 and 𝐵 = ∪𝑡∈[1,𝑇 ]𝐵𝑡, then the algorithm collects

∑︁
𝑠∈𝑆

𝑣𝑠,𝑚(𝑠) =
∑︁
𝑠∈𝑆

𝑝𝑓𝑠 +
∑︁
𝑏∈𝐵

𝑞𝑓𝑏 .

Second, although the final dual variables (𝑝𝑓 , 𝑞𝑓 ) are not dual feasible, the pair (𝑝𝑓 , 𝑞𝑖) is

a feasible dual solution of the offline matching problem. Finally, we obtain a factor 2 by

observing that ∑︁
𝑠∈𝑆

𝑝𝑓𝑠 +
∑︁
𝑏∈𝐵

𝑞𝑓𝑏 =
∑︁
𝑏∈𝐵

𝑞𝑖𝑏.

157



6.4.3 Proof of Proposition 9

First, we observe that by complementary slackness, any seller 𝑠 (buyer 𝑏) that departs

unmatched has a final price 𝑝𝑓𝑠 = 0 (final profit margin 𝑞𝑓𝑏 = 0). When a seller 𝑠 is critical

and matches to 𝑏, we have 𝑣𝑠,𝑏 = 𝑝𝑓𝑠 + 𝑞𝑓𝑏 . Therefore, DDA collects a reward of 𝒜 =∑︀
𝑠∈𝑆 𝑝

𝑓
𝑠 +

∑︀
𝑏∈𝐵 𝑞

𝑓
𝑏 .

Second, let us consider a buyer 𝑏 and a seller 𝑠 ∈ [𝑏 − 𝑑, 𝑏) who has arrived before 𝑏

but not more than 𝑑 steps before. Because sellers do not finalize their matching before they

are critical, we know that 𝑠 ∈ 𝑆𝑏. An ascending auction may be triggered at the time of 𝑏’s

arrival, after which we have: 𝑣𝑠,𝑏 ≤ 𝑝𝑠(𝑏)+𝑞𝑏(𝑏) ≤ 𝑝𝑓𝑠+𝑞
𝑖
𝑏, where the second inequality follows

from the definition that 𝑞𝑏(𝑏) = 𝑞𝑖𝑏 and from the monotonicity of sellers’ prices (Lemma 4).

Thus, (𝑝𝑓 , 𝑞𝑖) is a feasible solution to the offline dual problem.

Finally, we observe that upon the arrival of a new buyer, the ascending auction does not

change the sum of prices and margins for vertices who were already present:

Claim 3. Let 𝑏 be a new buyer in the market, and let 𝑝, 𝑞 be the prices and margins before

𝑏 arrived, and let 𝑆𝑡 and 𝐵𝑡 be the sets of sellers and buyers present before 𝑏 arrived. Let 𝑝′,

𝑞′ be the prices and margins at the end of the ascending auction phase. Then:

∑︁
𝑠∈𝑆𝑡

𝑝𝑠 +
∑︁
𝑏∈𝐵𝑡

𝑞𝑏 =
∑︁
𝑠∈𝑆𝑡

𝑝′𝑠 +
∑︁
𝑏∈𝐵𝑡

𝑞′𝑏. (6.1)

The proof of Claim 3 is deferred to Appendix C.1. By applying this equality iteratively

after each arrival, we can relate the initial margins 𝑞𝑖 to the final margins 𝑞𝑓 and prices 𝑝𝑓 :

Claim 4.
∑︀

𝑠∈𝑆 𝑝
𝑓
𝑠 +

∑︀
𝑏∈𝐵 𝑞

𝑓
𝑏 =

∑︀
𝑏∈𝐵 𝑞

𝑖
𝑏.

This completes the proof of Proposition 9 given that the offline algorithm achieves at

most:

𝒪 ≤
∑︁
𝑠∈𝑆

𝑝𝑓𝑠 +
∑︁
𝑏∈𝐵

𝑞𝑖𝑏 ≤ 2𝒜.
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6.5 Next steps: beating 1/4

In this section, we discuss potential options to improve on the 1/4 factor. One possibility

is to design algorithms directly for general graphs without using the reduction to bipartite

constrained graphs. While we think this is a promissing direction, we do not

Another option is to improve upon the factor 1/2 for bipartite constrained graphs. Two

strategies come to mind: First we can study algorithms which also work in the Free Disposal

setting where decisions need to be finalized upon arrival of a buyer. This is the subject of

active research, such as [132]. Second, we can use the fact that our deadline model allows

for more flexibility: as long as a vertex is present, we may change her matches. This is the

key idea in the DDA algorithm, where we postpone the decision of whom to match until the

last possible minute. While this doesn’t improve the worst case bound beyond 1/2, we see in

simulations (see Chapter 7) that this idea performs well on practical settings.

6.5.1 𝛼-DDA algorithm

One drawback of the DDA algorithm is that it is not greedy enough: it may choose to let a

seller depart unmatched when it is not included in a maximum weight matching, even though

including this seller is “almost” a max weight matching. This is the case, for example, with

the example in Figure 6-3.

In this section, we introduce a variation, called 𝛼-DDA which we conjecture outperforms

𝐷𝐷𝐴 both in the worst case and in practical settings.

At a high level, the algorithm is inspired from the DDA algorithm: we maintain a max-

imum weight matching over the vertices that are present. The key difference is that when

a seller is about to depart, we increase all of its edges by a factor 𝛼 ≥ 1, and re-compute

the maximum-weight matching. We can interpret this new algorithm as an interpolation

between DDA and greedy: when 𝛼 = 1, this is exactly DDA, and when 𝛼 → ∞, this is the

greedy algorithm. In other words, the larger 𝛼 is, and the more we are willing to accept a

sub-optimal match for the departing seller. Note that when 𝛼 ≥ 2, it’s easy to construct an
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example from the one in Figure 6-1 that leads to a factor 1/2. Thus we can assume 𝛼 ∈ [1, 2).1

We now detail how to perform the step to re-compute a matching after increasing the

edges adjacent to the critical vertex. Let 𝑠 be the critical seller at time 𝑡, and let 𝑝𝑠(𝑡) be

her price at that time. Let 𝑁(𝑠) be the set of all buyers that are neighbours of 𝑠, and set

𝑝𝑠(𝑡) = max𝑏∈𝑁(𝑠) 𝛼𝑣𝑠,𝑏− 𝑞𝑏(𝑡). Note that using 𝑝𝑠(𝑡) instead of 𝑝𝑠(𝑡) restores dual feasibility.

We can now run an “ auction” in reverse, which is started the critical seller 𝑠 now bids on

her highest margin neighbour, etc. Similarly to the proof of Claim 6.1, there is conservation

of the dual values, except for 𝑝𝑠(𝑡).

Conjecture 1. 𝛼-DDA is
√
5−1
2

-competitive on bipartite constrained graphs when 𝛼 =
√
5−1
2

.

6.5.2 An incomplete primal-dual proof of Conjecture 1.

Claim 5. For every seller 𝑠, 𝑝𝑓𝑠 ≥ 𝛼𝑝𝑠(𝑡) where 𝑡 is the time when 𝑠 becomes critical.

Proof. If 𝑠 was not tentatively matched at 𝑡, then by complementary slackness 𝑝𝑠(𝑡) = 0 and

the result is trivial. We now assume that 𝑠 was tentatively matched to a buyer 𝑏 at 𝑡. Let us

denote 𝑝𝑠(𝑡−) and 𝑞𝑏(𝑡−) (𝑝𝑠(𝑡+) and 𝑞− 𝑏(𝑡+)) the margins of 𝑏 at the begining (respectively

end) of the reverse auction step.

Because 𝑏 is now unmatched at the start of the reverse auction, any bid on 𝑏 will immedi-

ately terminate the auction. Therefore 𝑞𝑏(𝑡+) = 𝑞𝑏(𝑡
−). Because of complementary slackness,

we have 𝑝𝑠(𝑡−) + 𝑞𝑏(𝑡
−) = 𝑣𝑠,𝑏. We can conclude:

𝑝𝑓𝑠 = 𝑝𝑠(𝑡
+) ≥ 𝛼𝑣𝑠,𝑏 − 𝑞𝑏(𝑡+) = 𝛼𝑝𝑠(𝑡

−) + 𝛼𝑞𝑏(𝑡
−)− 𝑞𝑏(𝑡+) ≥ 𝛼𝑝𝑠(𝑡

−).

Remarks

1. Note that Dual feasibility implies that for any time 𝑡 we have 𝑣𝑠,𝑏 ≤ 𝑝𝑠(𝑡) + 𝑞𝑏(𝑡) if 𝑠

and 𝑏 are present in the pool.
1This goes contrary to the popular French saying “Un tiens vaut mieux que deux tu l’auras” (a bird in

the hand is worth two in the bush).
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2. If 𝑠 becomes critical at 𝑡 and finally matches to 𝑏, the algorithm collects 𝑣𝑠,𝑏 =

1
𝛼

(︁
𝑝𝑓𝑠 + 𝑞𝑓𝑏

)︁
.

Assumption 1. We assume for now that similarly to the DDA algorithm, the dual variables

𝑝𝑠(𝑡) and 𝑞𝑏(𝑡) are monotone functions of 𝑡.

Consider two vertices 𝑠, 𝑏. Two cases can occur:

Case 1: 𝑏 is matched before 𝑠 becomes critical. Then if 𝑡 is the time at which 𝑏 is matched, we

have: 𝑣𝑠,𝑏 ≤ 𝑝𝑠(𝑡) + 𝑞𝑏(𝑡) and using Claim 5 and Assumption 1 that 𝑝𝑠 increases over

time, we get 𝑣𝑠,𝑏 ≤ 1
𝛼
𝑝𝑓𝑠 + 𝑞𝑓𝑏 .

Case 2: 𝑏 is matched after 𝑠 becomes critical. Then if 𝑡 is the time at which 𝑠 becomes critical,

by definition of our reverse auction step, we have: 𝑝𝑓𝑠 ≥ 𝛼𝑣𝑠,𝑏 − 𝑞𝑏(𝑡). Therefore,

𝑣𝑠,𝑏 ≤ 1
𝛼

(︁
𝑝𝑓𝑠 + 𝑞

(𝑖)
𝑏

)︁
.

Therefore,
(︁

1
𝛼
𝑝𝑓𝑠 ,max

(︁
𝑞𝑓𝑏 ,

1
𝛼
𝑞
(𝑖)
𝑏 )
)︁)︁

is a dual feasible solution to the offline problem. De-

note 𝒪 to be the reward collected by the offline algorithm. We have:

𝛼𝒪 ≤
∑︁
𝑠

𝑝𝑓𝑠 +
∑︁
𝑗

max(𝛼𝑞𝑓𝑏 , 𝑞
(𝑖)
𝑏 ) ≤

∑︁
𝑠

𝑝𝑓𝑠 + 𝛼
∑︁
𝑏∈𝐽

𝑞𝑓𝑏 +
∑︁
𝑏∈𝐽𝑐

𝑞
(𝑖)
𝑏 ,

Where 𝐽 is the set of buyers such that 𝛼𝑞𝑓𝑏 ≥ 𝑞
(𝑖)
𝑏 .

Claim 6. Similarly to Claim 4 in the case 𝛼 = 1, we have:

∑︁
𝑏∈𝐽𝑐

𝑞
(𝑖)
𝑏 ≤

∑︁
𝑏∈𝐽𝑐

𝑞𝑓𝑏 +
1

𝛼

∑︁
𝑠

𝑝𝑓𝑠

Proof. The proof follows the same induction idea as in Claim 4: if we denote 𝑡𝑠 to be the

departing time of seller 𝑠, then using Claim 5, it is enough to prove that

∑︁
𝑏∈𝐽𝑐

𝑞
(𝑖)
𝑏 ≤

∑︁
𝑏∈𝐽𝑐

𝑞𝑓𝑏 +
∑︁
𝑠

𝑝𝑠(𝑡𝑠).
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Under Assumption 1, that buyer’s margins are monotone, the duals for buyers in set 𝐽 𝑐

keep decreasing. Their aggregate decrease is at most the aggregate increase in all of the

seller’s prices.

Using Claims 5 and 6, we can conclude:

𝒪 ≤
(︂
1 +

1

𝛼

)︂∑︁
𝑖

𝑝𝑓𝑖 + 𝛼
∑︁
𝑏

𝑞𝑓𝑏 ≤ max

(︂
1 +

1

𝛼
, 𝛼

)︂
𝒜

Figure 6-4: In this example, vertices arrive in the order 𝑎, 𝑏, 𝑐, 𝑑, 𝑒. 𝑎,𝑏 and 𝑐 are sellers, and
start with prices 𝑝𝑎 = 𝑝𝑏 = 𝑝𝑐 = 0. 𝑑 and 𝑒 are buyers, when 𝑑 arrives, its margin is 1 and
no auction is started. When 𝑒 arrives, its margin is initially 1 and starts an auction. At the
end of the auction, 𝑝𝑐 = 1 − 1/𝛼 and 𝑞𝑑 = 𝑞𝑒 = 1/𝛼 these values are denoted in red. At the
time when 𝑎 becomes critical, the reverse auction leads to 𝑝𝑐 = 0 and 𝑞𝑑 = 𝑞𝑒 = 1 which
violates monotonicity.

Remark 3. Two comments are in place:

- Note that Assumption 1 is not always verified. In Figure 6-4 we provide an example

where buyers’ margins increase and sellers’ prices decrease during the reverse auction

phase.

- Solutions to correct this shortcoming may fall in two categories. One could use a

charging mechanism to account for the non-monotonicity in the duals. Another idea
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would be to use another mechanism to restore dual feasibility after increasing the edges

adjacent to the critical vertex, in a way that maintains monotonicity.

6.6 Conclusion

This paper introduces a model for dynamic matching in which all agents arrive and depart

after some deadline. Match values are heterogeneous and the underlying graph is non-

bipartite. We study online algorithms for two settings, where vertices arrive in an adversarial

or random order.

We introduce two new 1/4-competitive algorithms when departures are deterministic

and known in advance. We also provide a 1/8-competitive algorithm when departures are

stochastic, i.i.d, memoryless, and known at the time a vertex becomes critical. Finally we

show that no online algorithm is more than 1/2-competitive.

Importantly, our model imposes restrictions on the departure process and requires the

algorithm to know when vertices become critical. Other than closing the gaps between the

upper bound 1/2 and the achievable competitive ratios, we point out a just a few interest-

ing directions for future research. Our model imposes that matches retain the same value

regardless of when they are conducted. An interesting direction is to account for agents’

waiting times. A different intersting objective is to achieve both a high total value and a

large fraction of matched agents. Finally, it is interesting to consider the stochastic setting

with prior infromation over weights and future arrivals.
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Chapter 7

Maximum Weight Online Matching with

Deadlines in Random Order
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7.1 Introduction

In this chapter, we study the setting in which vertices arrive in random order. We analyze

a batching algorithm which, every 𝑑+1 time steps, computes a maximum weighted matching

among the last 𝑑 + 1 arrivals. Vertices that are left unmatched are discarded forever. We

show that when the number of vertices is sufficiently large, batching is 0.279-competitive.

The analysis proceeds in three steps. First, we show that the competitive ratio is bounded

by the solution to a graph covering problem. Second, we show how a solution for small graphs

can be extended to covers for larger graphs. Finally, we establish a reduction that allows us

to consider only a finite set of values for 𝑑. We conclude with a computer-aided argument

for graphs in the finite family.

7.2 Random arrival order

In some cases, the vertices can be assumed to come from a distribution that is unknown to

the online algorithm. One way to model this is to assume that the adversary chooses the

underlying graph, but that the vertices arrive in random order.

7.2.1 The batching algorithm

The batching algorithm computes a maximum-weight matching every 𝑑+1 time steps. Every

vertex in the matching is then matched, and all other vertices in the batch are discarded.

Theorem 7. Batching is (0.279 +𝑂(1/𝑛))-competitive.

The proof of Theorem 7 works in three steps. In a first step, we reduce the analysis of

the competitive ratio of Batching to a graph covering problem. More precisely, we show that

it is enough to cover 𝐶𝑑
𝑛, the cycle with 𝑛 vertices to the power 𝑑, with ensembles of cliques.

Second, we show how a cover for small 𝑛 can be extended to any 𝑛 at the cost of a small

rounding error. Finally, we establish a reduction that allows us to consider only a finite set

of values for 𝑑. We conclude with a computer-aided argument for graphs in the finite family.
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Reducing to a graph theoretic problem

There is no harm in assuming that the underlying graph 𝐺 is a complete. Recall that 𝑆𝑛 is

the set of all permutations over integers 1, ..., 𝑛. For any deadline 𝑑 and any arrival sequence

𝜎 ∈ 𝑆𝑛, we define the path graph 𝑃 𝑑
𝑛(𝜎) with edge-weight 𝑣𝑖𝑗 = 1 if |𝜎(𝑖) − 𝜎(𝑗)| ≤ 𝑑, and

𝑣𝑖𝑗 = 0 otherwise.1

Note that every batch in the algorithm has 𝑑 + 1 vertices except the last batch which

may have fewer vertices. Let 𝑏𝑖(𝜎, 𝑑) be the batch of vertex 𝑖 under permutation 𝜎 and batch

size 𝑑 + 1: 𝑏𝑖(𝜎, 𝑑) is the unique integer such that (𝑑 + 1)(𝑏𝑖 − 1) < 𝜎(𝑖) ≤ (𝑑 + 1)𝑏𝑖. We

define the batched graph 𝐵𝑑
𝑛(𝜎) with edge-weight 𝑣𝑖𝑗 = 1 if 𝑖 and 𝑗 are in the same batch (i.e.

𝑏𝑖(𝜎, 𝑑+ 1) = 𝑏𝑗(𝜎, 𝑑+ 1)), and 𝑣𝑖𝑗 = 0 otherwise.2

For any 𝑛 ≥ 𝑑 ≥ 1, denote 𝐶𝑑
𝑛 to be the 𝑛-cycle to the power 𝑑.

Definition 5 (Graph operations). For any two graphs 𝐻 and 𝐻 ′ with vertices 1, ..., 𝑛 and

respective edge weights 𝑣𝑖𝑗, 𝑣′𝑖𝑗, we define the following:

(i) The linear combination 𝑎𝐻 + 𝑏𝐻 ′ denotes the graph with edge weights 𝑎𝑣𝑖𝑗 + 𝑏𝑣′𝑖𝑗,

(ii) The product 𝐻 *𝐻 ′ denotes the graph with edge weights 𝑣𝑖𝑗 * 𝑣′𝑖𝑗, and

(iii) We say that 𝐻 is a cover of 𝐻 ′ if for all 𝑖, 𝑗, 𝑣𝑖,𝑗 ≥ 𝑣′𝑖𝑗.

For any graph 𝐻, let 𝑚(𝐻) denote the value of a maximum-weight matching over 𝐻.

Observe that when the arrival sequence is 𝜎, the graph 𝑃 𝑑
𝑛(𝜎)*𝐺 = 𝐺(𝑑, 𝜎) and therefore the

offline algorithm collects 𝑚(𝑃 𝑑
𝑛(𝜎)*𝐺). Note that the online algorithm collects 𝑚(𝐵𝑑

𝑛(𝜎)*𝐺).

Remark 4. Observe that for any graphs 𝐻,𝐻 ′, 𝐺 and any 𝑎, 𝑏 ∈ R, we have:

- 𝑚(𝑎𝐻 + 𝑏𝐻 ′) ≤ 𝑎𝑚(𝐻) + 𝑏𝑚(𝐻 ′).

- If 𝐻 is a cover of 𝐻 ′, then 𝑚(𝐻 *𝐺) ≥ 𝑚(𝐻 ′ *𝐺).
1Note that 𝑃 𝑑

𝑛(𝜎) corresponds to the path (𝜎(1), 𝜎(2)), (𝜎(2), 𝜎(3)), ..., (𝜎(𝑛−1), 𝜎(𝑛)) taken to the power
𝑑.

2Note that 𝐵𝑑
𝑛(𝜎) is a collection of disjoint (𝑑+ 1)-cliques.
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Definition 6 (Periodic permutation). For 𝑝 < 𝑛 such that 𝑝 divides 𝑛, we say that a

permutation 𝜎 ∈ 𝑆𝑛 is 𝑝-periodic if for all 𝑖 ∈ [1, 𝑛− 𝑝], 𝜎(𝑖+ 𝑝) ≡ 𝜎(𝑖) + 𝑝 mod 𝑛.

We say that a permutation 𝜎 is periodic if there exists 𝑝 such that 𝜎 is 𝑝-periodic.

Definition 7 ((𝛼, 𝑑)-cover). Let 𝐹 be an unweighted graph with 𝑛 vertices. We say that

a set of permutations {𝜎1, ..., 𝜎𝐾} ∈ 𝑆𝑛 forms an (𝛼, 𝑑)-cover of 𝐹 if there exist values

𝜆1, ..., 𝜆𝐾 ∈ [0, 1] such that:

(i)
∑︀

𝑘≤𝐾 𝜆𝑘𝐵
𝑑
𝑛(𝜎𝑘) is a cover of 𝐹 .

(ii)
∑︀

𝑘≤𝐾 𝜆𝑘 = 𝛼.

We say that an (𝛼, 𝑑)-cover is 𝑝-periodic if for all 𝑘, 𝜎𝑘 is 𝑝-periodic.

The next proposition will allow us to abstract away from the weights that are chosen by

the adversary. For any graph 𝐻, we denote by 𝐻𝑖𝑗 the weight 𝑣𝑖𝑗 in 𝐻.

Proposition 10. If there exists an (𝛼, 𝑑)-cover of 𝐶𝑑
𝑛, then batching is 1/𝛼-competitive.

Proof. Let id be the identity permutation over 𝑛 vertices. Let {𝜎1, ..., 𝜎𝐾} be an (𝛼, 𝑑)-cover

of 𝐶𝑑
𝑛. Fix an arrival sequence 𝜎 ∈ 𝑆𝑛. We first claim that {𝜎1∘𝜎, ..., 𝜎𝐾 ∘𝜎} is an (𝛼, 𝑑)-cover

of 𝑃 𝑑
𝑛(𝜎).

For any 𝜎 ∈ 𝑆𝑛, let us denote 𝛽𝑖,𝑗(𝜎) and 𝜌𝑖,𝑗(𝜎) to be the weights of edge (𝑖, 𝑗) in 𝐵𝑑
𝑛(𝜎)

and 𝑃 𝑑
𝑛(𝜎) respectively. Consider (𝑖, 𝑗) ∈ 𝑃 𝑑

𝑛(𝜎): |𝜎(𝑖)− 𝜎(𝑗)| ≤ 𝑑:

∑︁
𝑘

𝜆𝑘𝛽𝑖,𝑗(𝜎𝑘 ∘ 𝜎) =
∑︁
𝑘

𝜆𝑘I[𝑏𝑖(𝜎𝑘 ∘ 𝜎, 𝑑) = 𝑏𝑗(𝜎𝑘 ∘ 𝜎, 𝑑)]

=
∑︁
𝑘

𝜆𝑘I[𝑏𝜎(𝑖)(𝜎𝑘, 𝑑) = 𝑏𝜎(𝑗)(𝜎𝑘, 𝑑)]

≥ 𝜌(id)𝜎(𝑖),𝜎(𝑗) = 1,

where the last inequality is implied by the fact that {𝜎1, ..., 𝜎𝐾} is an (𝛼, 𝑑)-cover of 𝐶𝑑
𝑛 and

therefore of 𝑃 𝑑
𝑛(id). Therefore the claim holds using remark 4.
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Denote by BAT the value collected by the batching algorithm and OFF the value collected

by the offline algorithm. Observe that

OFF =
1

𝑛!

∑︁
𝜎∈𝑆𝑛

𝑚(𝑃 𝑑
𝑛(𝜎) *𝐺)

≤ 1

𝑛!

∑︁
𝜎∈𝑆𝑛

∑︁
𝑘

𝜆𝑘𝑚(𝐵𝑑
𝑛(𝜎𝑘 ∘ 𝜎) *𝐺)

=
1

𝑛!

∑︁
𝑘

𝜆𝑘
∑︁
𝜎′∈𝑆𝑛

𝑚(𝐵𝑑
𝑛(𝜎

′) *𝐺)

= 𝛼BAT,

where we used the change of variable 𝜎′ = 𝜎𝑘 ∘ 𝜎 and the fact that the application

𝒜𝑘 : 𝜎 ↦→ 𝜎𝑘 ∘ 𝜎 is a bijection.

We have reduced the analysis of Batching to a graph-theoretic problem without edge

weights. In what follows, we will show that we can reduce the problem further to find covers

of 𝐶𝑑
𝑛 for only small values of 𝑛 and 𝑑.

Reducing 𝑛: periodic covers.

We now wish to find (𝛼, 𝑑)-covers for 𝐶𝑑
𝑛 for every 𝑛 and 𝑑. In Proposition 11, we show that

it is sufficient to find periodic covers for small values of 𝑛.

Proposition 11. Let 𝑝 be a multiple of 𝑑 + 1, and 𝑛1 a multiple of 𝑝. Any 𝑝-periodic

(𝛼, 𝑑)-cover of 𝐶𝑑
𝑛1

can be extended into an (𝛼 +𝑂(𝑝/𝑛), 𝑑)-cover of 𝐶𝑑
𝑛 for any 𝑛 ≥ 𝑛1.

Proof when 𝑛 is a multiple of 𝑝. Let {𝜎1, ..., 𝜎𝐾} be a 𝑝-periodic (𝛼, 𝑑)-cover of 𝐶𝑑
𝑛1

. We will

show that it can be extended into an (𝛼, 𝑑)-cover of 𝐶𝑑
𝑛.

Assume for now that 𝑛 is a multiple of 𝑝. Let 𝜎′
𝑘 be the 𝑝-periodic permutation over

1, ..., 𝑛 such that for all 𝑖 ∈ [1, 𝑝], 𝜎′
𝑘(𝑖) = 𝜎𝑘(𝑖). Take 𝑖′, 𝑗′ ∈ [1, 𝑛] such that |𝑖′ − 𝑗′| ≤ 𝑑.

Because 𝑛1 > 𝑝 is a multiple of 𝑝, there exist 𝑖, 𝑗 ∈ [1, 𝑛1] such that 𝑖 ≡ 𝑖′ mod 𝑝, 𝑗 ≡ 𝑗′
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mod 𝑝 and |𝑖− 𝑗| ≤ 𝑑. By 𝑝-periodicity of 𝜎𝑘 and 𝜎′
𝑘, we know that 𝐵𝑑

𝑛(𝜎
′
𝑘)𝑖′,𝑗′ = 𝐵𝑑

𝑛1
(𝜎𝑘)𝑖,𝑗.

Thus we can conclude that {𝜎′
1, ..., 𝜎

′
𝐾} is an (𝛼, 𝑑)-cover of 𝐶𝑑

𝑛.

In the case when 𝑛 is not a multiple of 𝑝, the proof follows similar ideas and looses an

additional factor
(︁

𝑛
𝑛−𝑝

)︁2
due to rounding of 𝑛 to a lower multiple of 𝑝. Details are provided

in Appendix D.1.

Reducing 𝑑: cycle contraction.

In Proposition 11, we show that it is enough to find periodic (𝛼, 𝑑)-covers of 𝐶𝑑
𝑛 for small

values of 𝑛. Next, we provide a reduction that enables us to consider only a finite set of

values for 𝑑.

The key idea of the reduction is that we can contract vertices of 𝐶𝑑
𝑛 into 𝑛/𝑢 groups of

𝑢 vertices. The resulting graph also happens to be a cycle 𝐶(𝑑+1)/𝑢
𝑛/𝑢 . In Proposition 12, we

provide a way to expand an (𝛼, 𝑢− 1)-cover on the contracted graph into an (𝛼, 𝑑) cover on

the original graph.

Definition 8 (Cycle contraction). For any 𝑛, 𝑑 and an integer 𝑢 which divides 𝑛, we define

the 𝑢-contraction 𝑓𝑢(𝐶
𝑑
𝑛) to be the graph with vertices 𝑎𝑘 = {𝑢𝑘 + 1, ..., 𝑢(𝑘 + 1)} for 𝑘 ∈

[0, 𝑛/𝑢 − 1], and edges (𝑎𝑘, 𝑎𝑙) if and only if there exist 𝑖 ∈ 𝑎𝑘 and 𝑗 ∈ 𝑎𝑙 with an edge (𝑖, 𝑗)

in 𝐶𝑑
𝑛.

Claim 7. For any 𝑑, if 𝑢 > 1 divides 𝑑+ 1 and 𝑑+ 1 divides 𝑛, then 𝑓𝑢(𝐶
𝑑
𝑛) = 𝐶

(𝑑+1)/𝑢
𝑛/𝑢 .

Proof. We first prove that 𝐶(𝑑+1)/𝑢
𝑛/𝑢 covers 𝑓𝑘(𝐶𝑑

𝑛). Fix 𝑘, 𝑙 ∈ [0, 𝑛/𝑢−1], and assume that 𝑘 < 𝑙.

If |𝑙−𝑘| ≤ (𝑑+1)/𝑢, then let 𝑖 = 𝑢(𝑘+1) and 𝑗 = 𝑢𝑙+1. We have |𝑗−𝑖| = 𝑢(𝑙−𝑘−1)+1 ≤ 𝑑,

thus (𝑖, 𝑗) ∈ 𝐶𝑑
𝑛 and (𝑘, 𝑙) ∈ 𝑓𝑢(𝐶𝑑

𝑛).

Conversely, we now prove that 𝑓𝑢(𝐶𝑑
𝑛) covers 𝐶(𝑑+1)/𝑢

𝑛/𝑢 . If there exist 𝑖 ∈ 𝑎𝑘 and 𝑗 ∈ 𝑎𝑙
such that |𝑗 − 𝑖| ≤ 𝑑, then 𝑢(𝑙 − 𝑘) ≤ 𝑢𝑙 + 1 − 𝑢(𝑘 + 1) ≤ 𝑑 + 1 which implies that

(𝑘, 𝑙) ∈ 𝐶(𝑑+1)/𝑢
𝑛/𝑢 .
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Figure 7-1: Left: 𝐶3
12, with contraction for 𝑢 = 2. Right: Contracted graph 𝑓(𝐶3

12) = 𝐶2
6

with vertices 𝑎 = {1, 2}, 𝑏 = {3, 4}, ... 𝑓 = {11, 12}.

Proposition 12. Fix 𝑑 ≥ 1. For 𝑑+ 1 > 𝑘 ≥ 1, suppose that there is a periodic (𝛼, 𝑘 − 1)-

cover of 𝐶𝑘
𝑟𝑘.

(i) For any integer 𝑟, if 𝑘 divides 𝑑+1 then there exists a periodic (𝛼, 𝑑)-cover of 𝐶𝑑
𝑟(𝑑+1).

(ii) In general, if 𝑣 is the remainder of the euclidian division of 𝑑+1 by 𝑘, then there exists

a periodic (𝛼(1 + 𝑣/𝑑+1−𝑣)2, 𝑑)-cover of 𝐶𝑑
𝑟(𝑑+1).

Proof of (i). Suppose that 𝑑 + 1 = 𝑘𝑢 and suppose that there exists 𝑝 multiple of 𝑑 + 1

such that we have a 𝑝-periodic (𝛼, 𝑘 − 1)-cover {𝜎1, ..., 𝜎𝐾} of 𝑓𝑢
(︁
𝐶𝑑

𝑟(𝑑+1)

)︁
= 𝐶𝑘

𝑟𝑘. For any

permutation 𝜎 ∈ 𝑆𝑟𝑘 we can construct a permutation 𝜎′ ∈ 𝑆𝑟(𝑑+1) in the following way: if

𝑖 ∈ 𝑎𝑡 then 𝜎′(𝑖) = 𝑛
𝑘
𝜎(𝑡) + 𝑖. Because 𝐵𝑘

𝑟𝑘(𝜎𝑖) is a cover of 𝐵𝑑
𝑟(𝑑+1), we can conclude that

𝜎′
1, ..., 𝜎

′
𝐾 is an (𝛼, 𝑑)-cover of 𝐶𝑑

𝑟(𝑑+1).

The proof for case (ii) follows a similar idea, with an additional randomization that

chooses a subset 𝑑 + 1 − 𝑣 vertices that we can group in every group of 𝑑 + 1. The details

are in Appendix D.1.
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Final step: Computer-aided proof of factor 2.79

We will now apply Proposition 11 with 𝑝 = 2(𝑑 + 1) and 𝑛1 = 4(𝑑 + 1). Let Ω𝑑 be the set

of 2(𝑑+ 1)-periodic permutations of 1, ..., 4(𝑑+ 1). We can find covers for 𝐶𝑑
4(𝑑+1) using the

following linear program:

minimize
∑︁
𝜎∈Ω𝑑

𝜆𝜎

subject to
∑︁
𝜎∈Ω𝑑

𝜆𝜎I[𝑏𝑖(𝜎, 𝑑) = 𝑏𝑗(𝜎, 𝑑)] ≥ 1, ∀(𝑖, 𝑗) ∈ 𝐶𝑑
4(𝑑+1)

𝜆𝜎 ∈ R+, 𝜎 ∈ Ω𝑑

(LP𝑑)

Proposition 13. Let 𝛼𝑑 be the solution to LP𝑑. Let 𝛼 = sup𝑑≥1 𝛼𝑑. Then Batching is

(1/𝛼 +𝑂(1/𝑛))-competitive.

Proof. Follows from Propositions 10 and 11.

The Linear program (LP𝑑) has 𝑂(𝑑!) variables, and solving it may not be computationally

possible when 𝑑 is large. Using Proposition 12, we now provide a way to find upper bounds

on 𝛼𝑑 by solving a different LP on a smaller graph.

Recall that Ω𝑘−1 is the set of 2𝑘-periodic permutations of 1, ..., 4𝑘. We define the problem

of finding an (𝛼, 𝑘 − 1)-cover of the cycle 𝐶𝑘
4𝑘.

minimize
∑︁

𝜎∈Ω𝑘−1

𝜆𝜎

subject to
∑︁

𝜎∈Ω𝑘−1

𝜆𝜎I[𝑏𝑖(𝜎, 𝑘 − 1) = 𝑏𝑗(𝜎, 𝑘 − 1)] ≥ 1, ∀(𝑖, 𝑗) ∈ 𝐶𝑘
4𝑘

𝜆𝜎 ∈ R+, 𝜎 ∈ Ω𝑘−1

(LP’𝑘)

We denote by 𝛼′
𝑘 the solution to (LP’𝑘). Solving (LP’𝑘) numerically for 𝑘 = 4 yields

𝛼′
4 ≤ 3.17. For all 𝑑 ≥ 52 Proposition 12 therefore implies that, 𝛼𝑑 ≤ 3.17 *

(︀
51
49

)︀2
= 3.58. 3

3We note that our methodology can be extended to obtain a better factor. For instance, being able to
solve (LP𝑑) for values higher than 50 would lead to a competitive ratio closer to 1

3 .
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For 𝑑 ≤ 50, we either solve (LP𝑑) directly, or use Proposition 12 to show that 𝛼𝑑 ≤ 3.58 (see

Appendix D.2). Observing that 2.79 ≤ 1
3.58

, this concludes the proof for Theorem 7.

7.2.2 Lower bound in random order.

Proposition 14. No algorithm is more than 1
2
-competitive even under the random arrival

order.

Proof. Consider a graph with three vertices {1, 2, 3} and 𝑑 = 1, i.e. vertices can only be

matched to the ones arriving just before or after them. After the first two arrivals, the online

algorithm𝒜 needs to decide whether to match them or let the first arrival leave. Furthermore,

it has no information on how 𝑣𝜎(1),𝜎(2) compares to the other edge weights. Therefore the

decision of whether to match has to be a coin toss. Regardless of whether the algorithm

matches the first two or the last two arrivals, its expected reward is 𝑣1,2+𝑣2,3+𝑣3,1
3

. OFF however

has an expected reward of max(𝑣1,2,𝑣2,3)+max(𝑣2,3,𝑣3,1)+max(𝑣3,1,𝑣1,2)

3
. Taking 𝑣1,2 = 𝑣2,3 → 0, we

get 𝒜 = 1/3 while OFF = 2/3 which concludes the proof.

7.3 Extension: the value of look-ahead information

We assume now that the online algorithm has advance knowledge of the vertices that will

arrive in 𝑙 time steps (and their adjacent edges). We can update the Batching Algorithm in

the following way: every 𝑑+ 𝑙+1 time steps, compute a maximum-weight matching on both

the current vertices and the next 𝑙 arrivals. Match vertices as they become critical according

to the matching, and discard unmatched vertices. Note that this is the same as running

Batching when the deadline is 𝑑+ 𝑙.

Proposition 15 shows that having information about even 𝑑 future arrivals can lead to

increases beyond the upper limit of 1/2 on the improvements through better algorithms.

Proposition 15. There exists an (𝑑+𝑙+1
𝑙+1

, 𝑑+ 𝑙)-cover of 𝐶𝑑
𝑛.

Proof. For 𝑘 ∈ [0, 𝑑 + 𝑙], let 𝜎𝑘(𝑖) = 𝑖 + 𝑘 mod 𝑛. Let 𝑖, 𝑗 be such that |𝑖 − 𝑗| ≤ 𝑑, then
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𝑏𝑖(𝜎𝑘, 𝑑) = 𝑏𝑗(𝜎𝑘, 𝑑) for at least 𝑙 + 1 different values of 𝑘. We can conclude that 𝜎0, ..., 𝜎𝑑+𝑙

is a (𝑑+𝑙+1
𝑙+1

, 𝑑+ 𝑙)-cover by taking 𝜆0 = ... = 𝜆𝑑+𝑙 =
1

𝑙+1
.

Corollary 6. Batching with 𝑙-lookahead is 𝑙+1
𝑑+𝑙+1

-competitive when 𝑛 is large.

7.4 Numerical results

In this section, we study the performance of different algorithms on graphs generated using

two real-world datasets. We are interested in comparing the DDA algorithm, introduced in

Chapter 6 to the Batching algorithm, which we studied in this chapter.

Recall that DDA randomizes vertices into two groups, and maintains a maximum-weight

matching over resulting bipartite graph through re-optimization. Vertices are only matched

when they become critical, i.e. when they are about to depart from the graph. In this section,

we consider a simpler, non-randomized, variant termed Re-Opt, in which a maximum-weight

matching is computed over the whole graph (and not a bipartite subset). While this simplified

algorithm does not have theoretical guarantees, we are able to show that it performs well,

both when departures are deterministic and geometrically distributed.

We will also consider a variant inspired from 𝛼-DDA, termed 𝛼-Re-Opt, which assigns a

multiplicative weight 𝛼 to vertices which are about to depart, as a way to biais the maximum-

weight matching towards vertices which are about to leave.

7.4.1 Setup

Data

The first experiment uses data from the National Kidney Registry (NKR), which consists

of 1681 patient-donor pairs who have joined the NKR. For any two patient-donor pairs 𝑘

and 𝑡, the data allows to verify whether they could have formed a 2-way exchange (match)

if they had been present at the same time. If that is the case, we set 𝑣𝑘,𝑙 = 1, otherwise and
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𝑣𝑘,𝑙 = 0 (in particular we simply try to maximize the number of matches).4

In the second instance, we use New York City yellow cabs dataset 5, which consists of

rides taken in NYC over a year. For any pair 𝑘, 𝑙 of trips, we can compute the Euclidian

distance that would have been traveled had the two passengers taken the same taxi (with

multiple stops). The value 𝑣𝑘,𝑙 represents the “distance saved” by combining the trips.

Numerical Simulations

In both cases, this enables us to generate a dynamic graph in the following way. For 𝑡 ∈ [1, 𝑇 ]:

1. Sample with replacement a pair 𝑡 from the dataset.

2. For any pair 𝑙 that is present in the pool, compute the value 𝑣𝑡,𝑙 of matching 𝑡 to 𝑙.

3. Sample a departure time 𝑑𝑡 ∼ 𝒟.

We consider three departure settings, termed deterministic, exponential and uniform

respectively, in which 𝒟 is either constant with value 𝑑, or exponentially distributed with

mean 𝑑. We will report simulation results for 𝑑 = 50, 75, 100, 125, 150.

Some of the algorithms in Section 7.4.2 are parameterized. In that case, we only plot the

out of sample performance when selecting the parameter on a validation subset of the data.

7.4.2 Results

Value of knowing Departure times

In this section, we assume that critical vertices reveal to the online algorithm that they are

about to depart. We will say that the departures are known. Note that in particular in

the case of exponential and uniform departures, the online algorithm has access to both the

distribution and the realization of the departure times for each vertex.

4We ignore here the possibility of larger exchanges between 3 pairs or chains, which are common in
practice.

5http://www.andresmh.com/nyctaxitrips/
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Figure 7-2: Performance of Greedy, Batching, Re-Opt and 𝛼-Re-Opt on kidney data. The
compatibility graph 𝐺 is binary-weighted.
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In Figures 7-2 and 7-3, we show that the Re-Opt algorithm is able to effectively use this

information in order to significantly increase the number of matches when compared to both

Batching and Greedy.

In Figure 7-2, we observe that Batching is significantly outperforming Greedy only in

the case where departures are deterministic. The intuition is that when departures are

stochastic, Batching runs the risk that some vertices are never considered in a match run.

When departures are deterministic however, as long as 𝑏 ≤ 𝑑, all vertices will be included in

at least one match run.

In Figure 7-3, we note that greedy performs significantly worse than in the case of the

kidney dataset (Figure 7-2) which had a binary-weighted compatibility graph. Observe that

both Re-Opt and Batching algorithms outperform Greedy. The intuition here is that because

edges can take any non-negative value, the value of making some agents wait is now higher.

We also observe that the benefit of 𝛼-Re-Opt over Re-Opt are much more pronounced in the

case of the kidney simulations than in the case of taxi data.

Re-Optimization vs Batching

In our implementation of Re-Opt in the previous section, we assumed that the online algo-

rithm knows when vertices became critical. In other words, we had access to the departure

realization. This additional information led to an increase in the number of matches, when

compared to Batching.

In this section, we implemented Re-Opt in a way that doesn’t use the information of

vertex criticality. To do this, we introduce a patience parameter 𝑝, which acts similarly to

a batch size. Instead of waiting for vertices to become critical, we match an edge whenever

at least one of the vertices has been waiting for more than the 𝑝 time steps. As with the

batching parameter 𝑏, we only show out of sample results for the best value of 𝑝.

In Figure 7-4, we see that in the case of deterministic departures, the critical times are de

facto known, and results are similar to those of section 7.4.2. In the case of either exponential

or uniform departures, Re-Opt and Batching seem to be performing similarly.
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Figure 7-3: Performance of Greedy, Batching, Re-Opt and 𝛼-Re-Opt on taxi data. The
compatibility graph 𝐺 is weighted ∈ R.
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Figure 7-4: Performance of Greedy, Batching, Re-Opt and 𝛼-Re-Opt on kidney data. The
compatibility graph 𝐺 is binary-weighted.
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Figure 7-5: Performance of Greedy, Batching, Re-Opt and 𝛼-Re-Opt on taxi data. The
compatibility graph 𝐺 is weighted ∈ R.
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In Figure 7-5, we see that in the case of deterministic departures, the critical times are de

facto known, and results are similar to those of section 7.4.2. In the case of either exponential

or uniform departures, Batching seem to be performing significantly better than Re-Opt.

Next Steps

Two interesting areas for future work include the setting when the information about agent’s

departure times is uncertain, as well as models that are less restrictive than the adversarial

setting (see, e.g., Ozkan and Ward [95]).

7.5 Conjecture: Batching is asymptotically optimal.

In this section we show how to reduce the analysis of batching to a graph-theoretic prob-

lem. We then provide numerical evidence for this problem, and evidence for the following

conjecture:

Conjecture 2. For 𝑛 large enough, Batching is 1/2-competitive when arrivals are in random

order.

Observe that it is not difficult to extend the example in Proposition 14 to a graph with

arbitrary many vertices. In turn this proves our claim that asymptotically, as 𝑛 → ∞, the

Batching algorithm has an optimal competitive ratio.

Proof Sketch and Key difficulty. Recall the notation from Section 7.2: 𝑃 𝑑
𝑛(𝜎) denotes the

offline graph under arrival permutation 𝜎. Similarly, 𝐵𝑑
𝑛(𝜎) denotes the Batched graph

under arrival permutation 𝜎. Offline collects E
[︀
𝑚(𝑃 𝑑

𝑛(𝜎) *𝐺)
]︀

while Batching collects

E
[︀
𝑚(𝐵𝑑

𝑛(𝜎) *𝐺)
]︀
.

Consider an edge 𝑖, 𝑗 ∈ [1, 𝑛]. Let 𝑝𝑖,𝑗 = P𝜎

[︀
(𝑖, 𝑗) ∈ 𝐵𝑑

𝑛|(𝑖, 𝑗) ∈ 𝑃 𝑑
𝑛(𝜎)

]︀
.

Claim 8. For all 𝑖, 𝑗, 𝑝𝑖,𝑗 = 1
2
.

Proof. Observe that (𝑖, 𝑗) ∈ 𝑃 𝑑
𝑛(𝜎) ⇔ |𝜎(𝑖) − 𝜎(𝑗)| ≤ 𝑑. Note that conditional on |𝜎(𝑖) −

𝜎(𝑗)| = 𝑘, we have P𝜎

[︀
(𝑖, 𝑗) ∈ 𝐵𝑑

𝑛(𝜎)
]︀
= 𝑑+1−𝑘

𝑑+1
.
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Using the fact that for all 𝑘 ∈ [1, 𝑑], P [|𝜎(𝑖)− 𝜎(𝑗)| = 𝑘] = 1
𝑑
, this implies

𝑝𝑖,𝑗 =
𝑑∑︁

𝑘=1

P [|𝜎(𝑖)− 𝜎(𝑗)| = 𝑘]
𝑑+ 1− 𝑘
𝑑+ 1

=
1

2
.

Note however that because matching 𝑚 is not a linear operator, we cannot conclude that

E
[︀
𝑚(𝐵𝑑

𝑛 *𝐺)
]︀
= 1

2
E [(]𝑚(𝑃 𝑑

𝑛(𝜎) * 𝐺)). Another way to see it is as follows: for a given 𝜎,

edges of different lengths have different probabilities of being kept in the Batched graph. The

maximum-weight matching on 𝑃 𝑑
𝑛(𝜎) *𝐺 may contain a higher fraction of long edges.

In the next Section we try to formulate this key difficulty as a graph theoretic problem.

7.5.1 A graph-theoretic problem.

Consider the 𝑛-cycle to the power 𝑑: 𝐶𝑑
𝑛 (see e.g. Figure 7-6). Let 𝒟 be a probability

distribution with support over the non-negative real numbers. We sample an edge weight,

i.i.d from 𝒟, for each edge in 𝐶𝑑
𝑛.

Now consider a maximum-weight matching over the resulting weighted graph. For every

edge (𝑖, 𝑗) ∈ 𝐶𝑑
𝑛, let us denote 𝑝𝑖,𝑗 the probability that the edge is in the maximum-weight

matching. We will say that edge (𝑖, 𝑗) has length |𝑖 − 𝑗|. Observe that by symmetry, any

two edges of the same length have the same probability of being in the matching.

Conjecture 3. For 𝑛 large enough, every edge in the graph has the same probability of being

selected.

Note that the length of an edge is defined using a canonical numbering of the vertices of

the graph 𝐶𝑑
𝑛. However, Conjecture 3 is a property of the graph itself. The key difficulty is

that different pairs of vertices will induce different distributions over their neighbors.
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Figure 7-6: Representation of the 𝑛-Cycle to the power 𝑑, for 𝑛 = 16 and 𝑑 = 3.

7.5.2 Numerical Results

In Figure 7-7, we show that for a variety of distributions 𝒟, the distribution of the lengths of

edges selected in the maximum-weight matching appears to be uniform whenever 𝑛 is large

enough compared to 𝑑.

Figure 7-7: Distribution of the length of edges selected by the maximum-weight matching,
for an exponential edge-weight distribution. Left: 𝑛 = 1000 and 𝑑 = 10. Right: 𝑛 = 500 and
𝑑 = 20. Both figures were conducted across 100 independent random draws and averaged.

We then ran a 𝜒2 statistical test to determine the probability that this distribution is

uniform. We obtained p-values above 0.999 for 𝑛 ∈ [50, 100] and 𝑑 ∈ [5, 50]. Although

that is not a proof that the distribution is uniform, this reinforces our conjecture that the

distribution of matched edge lengths is uniform.
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7.6 Conclusion

In this chapter, we build on the model introduced in Chapter 6 by assuming that the vertices

will not arrive in the worst possible order sequence. As a consequence, deterministic policies

such as Batching are no longer garanteed to perform badly. Our main result is to show

that under this new random order of arrivals assumption, the batching algorithm is 0.279-

competitive. Our proof first reduces the problem to a special graph covering problem. We

then show that an lower bound on the competitive ratio of Batching can be computed as the

limit of a sequence of Linear Programs. Finally, we prove that it is sufficient to explicitely

solve a small number of these LPs, and we provide a computer-aided argument to conclude.

We also extend our proof framework to the setting where the online algorithm is allowed

to know which vertices are going to arrive 𝑙 steps ahead of time. We provide a closed-form

competitive ratio that depends on the ratio of 𝑙/𝑑. In particular we show that if 𝑙 ≥ 𝑑, then

the batching algorithm performs better than any online algorithm that does not have access

to the look-ahead information.

Finally, we conjecture that batching is in fact 1/2-competitive, and we provide a proof

sketch as well as some numerical insights and intuition. Finally, we provide numerical simu-

lation results based on datasets of New York City’s taxis and the National Kidney Registry.

Our simulations compare Batching to the Re-Optimization algorithm introduced in Chapter

6.
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Chapter 8

A Dynamic Matching Framework with

Stochastic Information
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8.1 Introduction

In this chapter, we study instances where the platform has access to additional information

regarding future arrivals of vertices. This information can consist of a stochastic model, or

historical data. In section 8.2 we model this historical data as a probabilistic model on the

compatibility graph 𝐺 and study algorithms that achieve a constant fraction of the optimal

matching. In section 8.3 we show how the optimal algorithm can be formulated through

dynamic programming.

8.1.1 Model

Consistent with the notation introduced in Chapter 1, we are concerned with matching

vertices of a compatibility graph 𝐺. The specificity in this chapter, is that 𝐺 is going to be

generated stochastically, the matching algorithm is allowed additional information regarding

the distribution from which 𝐺 is sampled.

We define an edge-weighted type graph 𝑇 . For each vertex 𝑥 in 𝑇 , we define an arrival

rate 𝜆𝑥 and a departure rate 𝛿𝑥. The algorithm knows 𝑇 , 𝜆 and 𝜃. We then generate the

compatibility graph 𝐺 as follows: for every 𝑥, vertices 𝑖𝑥 arrive according to a Poisson(𝜆𝑥)

process. We say that 𝑖𝑥 is of type 𝑥 and its departure time is sampled from an Exponential(𝜃𝑥)

distribution. Upon arrival of a vertex 𝑖𝑥 of type 𝑥, it has an edge towards every vertex 𝑗 of

type 𝑦 if 𝑦 is a neighbor of 𝑥 in 𝑇 .

For a given matching rule 𝑅, the triplet (𝑇,𝜆,𝜃) defines a distribution over instances

of dynamic matching problems. Note that because our departure process is memoryless, at

each time 𝑡, the graph of vertices present can be represented compactly through a vector

𝑁(𝑡) = (𝑁𝑥(𝑡))𝑥∈𝑇 that represents how many vertices of each type are present.
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8.2 Competitive analysis

8.2.1 Analysis of the Offline algorithm 𝒪.

Let us denote 𝑣𝑖,𝑗 the weight of edge (𝑖, 𝑗) in 𝑇 , and let 𝑓 be an optimal solution to the

following “fractionnal assignment” linear program:

max
∑︁
𝑖<𝑗

𝑣𝑖,𝑗𝑓𝑖,𝑗

s.t.
∑︁
𝑗

𝑓𝑖,𝑗 ≤ 𝑝𝑖 ∀𝑖 ∈ 𝑇

𝑓𝑖,𝑗 = 𝑓𝑗,𝑖 ∈ [0, 1]

(8.1)

Proposition 16. 𝒪 ≤
∑︀

𝑖<𝑗 𝑓𝑖,𝑗𝑣𝑖,𝑗.

Proof. Consider a realization of arrivals 𝑎 = (𝑎1, ..., 𝑎𝑁) ∈ 𝑇𝑁 . Let 𝑛𝑖 be the number of

arrivals of type 𝑡𝑖. If there are no departures, i.e. 𝛿𝑖 = 0 for all 𝑖, then the offline solution

can be found by solving the following problem:

max
∑︁
𝑖<𝑗

𝑣𝑖,𝑗𝑥𝑖,𝑗

s.t.
∑︁
𝑗

𝑥𝑖,𝑗 ≤ 𝑛𝑖 ∀𝑖 ∈ 𝑇

𝑥𝑖,𝑗 = 𝑥𝑗,𝑖 ∈ {0, 1}

(8.2)

Let 𝑥*(𝑎) be the solution of the LP relaxation of 8.2. And let g =
∑︀

𝑎 𝑥
*(𝑎)P [𝑎] be the

expected vector of matches. Note that when departures are not 0, the expected performance

of the offline algorithm is given by:

𝒪 ≤ 1

𝑁

∑︁
𝑖,𝑗

𝑔𝑖,𝑗𝑤𝑖,𝑗.

187



Note that
∑︀

𝑗 𝑔𝑖,𝑗 =
∑︀

𝑎

(︁∑︀
𝑗 𝑥

*(𝑎)𝑖,𝑗

)︁
P [𝑎] ≤

∑︀
𝑎 𝑛𝑖P [𝑎] = E[𝑛𝑖] = 𝑁𝑝𝑖. Therefore 𝑔/𝑁

is a feasible solution to 8.1 which concludes the proof.

8.2.2 Special case: bipartite graphs with one-sided departures.

Consider the case where the type graph 𝑇 is bipartite: vertices 𝑖 belong to two sets 𝐴 and

𝐵. Suppose that for all 𝑖 ∈ 𝐴, 𝛿𝑖 = 0. Let 𝑓 be an optimal solution to the “fractional

assignment” defined in (8.1).

Algorithm 6 Suggested Matching (𝒮𝜖)
For each arrival 𝑥 of type 𝑖 ∈ 𝐵: Sample a type 𝑗 ∈ 𝐴 with probability (1−𝜖)𝑓𝑖,𝑗

𝑝𝑖
. If 𝑁𝑗 > 0,

match 𝑥 to a node of type 𝑗. Otherwise, discard node 𝑥.

Proposition 17. 𝒮𝜖 achieves a competitive ratio of (1− 𝜖)2.

Proof. Fix 𝑗 ∈ 𝐴. Let 𝐼 𝑡𝑗 be the indicator that a node of type 𝑗 arrives at 𝑡. Let 𝑀 𝑡
𝑖,𝑗 be the

indicator that 𝑖 ∈ 𝐵 arrives at 𝑡 and tries to match to 𝑗. Note that P
[︀
𝑀 𝑡

𝑖,𝑗 = 1
]︀
= (1− 𝜖)𝑓𝑖,𝑗.

We have

𝑁 𝑡+1
𝑖 = 𝑁 𝑡

𝑖 + 𝐼 𝑡𝑖 −
∑︁
𝑗∈𝐵

𝑀 𝑡
𝑖,𝑗I𝑁𝑡

𝑖>0 ≥ 𝑁 𝑡
𝑖 + 𝐼 𝑡𝑖 −

∑︁
𝑗∈𝐵

𝑀 𝑡
𝑖,𝑗.

Note that 𝑋 𝑡 = 𝐼 𝑡𝑖 −
∑︀

𝑗∈𝐵𝑀
𝑡
𝑖,𝑗 are i.i.d. random variables with mean E[𝑋 𝑡] = 𝜖𝑝𝑖, and are

bounded between −1 and 1 (assuming exactly one arrival per time step). Therefore, for all

𝑡, 𝑁 𝑡
𝑖 ≥

∑︀𝑡
𝑘=0𝑋(𝑘), and using Hoeffding’s inequality, we get:

P
[︀
𝑁 𝑡

𝑖 = 0
]︀
≤ P

[︃
𝑡−1∑︁
𝑘=0

𝑋(𝑘) ≤ 0

]︃
≤ 𝑒−𝜖2𝑝2𝑖 𝑡/2

Take 𝑡* such that for all 𝑖 ∈ 𝐴, 𝑒−𝜖2𝑝2𝑖 𝑡
*/2 ≤ 𝜖. For all 𝑡 ≥ 𝑡*, the probability that 𝑗 ∈ 𝐵

matches 𝑖 ∈ 𝐴 at 𝑡 is given by P
[︀
𝑀 𝑡

𝑖,𝑗

]︀
P [𝑁 𝑡

𝑖 > 0] ≥ (1 − 𝜖)2𝑓𝑖,𝑗. Therefore, E[𝒮𝜖(𝑡)] ≥

(𝑡− 𝑡*)(1− 𝜖)2
∑︀

𝑖,𝑗 𝑓𝑖,𝑗𝑣𝑖,𝑗.
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8.2.3 An 1
4(1+𝛾)-approximation algorithm

Let f be an optimal solution to (8.1).

Algorithm 7 Two-sided Suggested Matching (𝒮𝛼)
For each arrival 𝑥 of type 𝑖:

- With probability 𝛼, make 𝑥 wait.

- With probability 1 − 𝛼, try to match 𝑥: sample a type 𝑗 with probability 𝑓𝑖,𝑗
𝑝𝑖

. If there is
a node of type 𝑡𝑗, match it to the arriving node. Otherwise, discard node 𝑥 (i.e. never
match it).

Theorem 8. Let 𝛾 = max𝑖
𝛿𝑖
𝑝𝑖

. Then, 𝒮𝛼 is 𝛼(1−𝛼)
(1+𝛾)

-competitive.

Proof. Let 𝑁 𝑡
𝑖 be the number of nodes of type 𝑖 after 𝑘 arrivals. From Lemma 5, we know

that the Markov Chains 𝑁𝑖 reach steady-state. Let 𝜏 be the maximum mixing time over

all 𝑖. Using the notations from 17, let 𝑀 𝑡
𝑖,𝑗 be the event that 𝑖 tries to match to 𝑗 at 𝑡.

P[𝑀 𝑡
𝑖,𝑗 = 1] = (1−𝛼)𝑝𝑖 𝑓𝑖,𝑗𝑝𝑖

, and Let 𝑋 𝑡
𝑖,𝑗 =𝑀 𝑡

𝑖,𝑗I𝑁𝑡
𝑗>0 be the event that this try succeeds. We

have E[𝒮𝛼(𝑡)] ≥
∑︀𝑡

𝑘=𝜏+1

∑︀
𝑖<𝑗 P [𝑋𝑖,𝑗]𝑤𝑖,𝑗.

From Lemma 5 we know that P[𝑋𝑖,𝑗(𝑡)] = (1 − 𝛼)𝑓𝑖,𝑗P[𝑁𝑖(𝑡) > 0] = (1 − 𝛼)𝑓𝑖,𝑗
𝛼𝑝𝑖

𝑝𝑖+𝛿𝑖
.

Therefore

E[𝒮𝛼(𝑡)] ≥ (𝑡− 𝜏)
∑︁
𝑖,𝑗

(1− 𝛼)𝑓𝑖,𝑗
𝛼𝑝𝑖

𝑝𝑖 + 𝛿𝑖
𝑤𝑖.𝑗

≥ 𝛼(1− 𝛼)(𝑡− 𝜏)
(1 + 𝛾)

∑︁
𝑖,𝑗

𝑓𝑖,𝑗𝑤𝑖,𝑗

(8.3)

Which concludes the proof.

Lemma 5. For all 𝑖, the process (𝑁 𝑡
𝑖 )𝑡≥0 is a positive recurrent Markov chain which reaches

steady-state distribution 𝜋𝑖 = (𝜋0
𝑖 , 𝜋

1
𝑖 , ...), and in steady-state, P[𝑁𝑖(𝑡) > 0] ≥ 𝛼𝑝𝑖

𝑝𝑖+𝛿𝑖
.

Proof. Let us fix a type 𝑖. At each time step 𝑡, let 𝐴𝑡 be the indicator that a node of type 𝑖

arrives and has to wait, thus P[𝐴𝑡
𝑖 = 1] = 𝛼𝑝𝑖. Let 𝐵𝑡

𝑖 be the indicator that a node of type 𝑖
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gets matched by the incoming node at 𝑡: the probability that a node of type 𝑗 tries to match

a node of type 𝑖 is (1 − 𝛼)𝑝𝑗
𝑓𝑖,𝑗
𝑝𝑗

, which means that P [𝐵𝑡
𝑖 = 1] = (1 − 𝛼)I𝑁𝑡

𝑖>0

∑︀
𝑗 𝑝𝑗

𝑓𝑖,𝑗
𝑝𝑗

=

I𝑁𝑡
𝑖>0(1−𝛼)𝑝𝑖. Finally, let 𝐷𝑡

𝑖 be the number of departures at 𝑘, 𝐷𝑡 ∼ 𝐵𝑖𝑛(𝑁 𝑡
𝑖 +𝐴

𝑡
𝑖−𝐵𝑡

𝑖 , 𝛿𝑖).

Note that we have:

𝑁 𝑡+1
𝑖 = 𝑁 𝑡

𝑖 + 𝐴𝑡
𝑖 −𝐵𝑡

𝑖 −𝐷𝑡
𝑖

which proves that 𝑁 𝑖 has the Markov property. Furthermore if 𝑁 𝑡
𝑖 ≥ 2 then 𝑁 𝑡

𝑖 +𝐴
𝑡
𝑖−𝐵𝑡

𝑖 ≥ 1

and E[𝐷𝑡
𝑖 ] ≥ 𝛿𝑖 . Assuming 𝛼 ≤ 1/2, E[𝑁 𝑡+1

𝑖 − 𝑁 𝑡
𝑖 ] = 𝛼𝑝𝑖 − (1 − 𝛼)𝑝𝑖 − 𝛿𝑖 ≤ −𝛿𝑖. Using a

result by Foster, this proves that 𝑁𝑖 is positive recurrent.

In steady-state, flow conservation yields:

𝜋0
𝑖 𝛼𝑝𝑖 =

∑︁
𝑘≥1

𝜋𝑘
𝑖 P[𝑁 𝑡+1

𝑖 = 0|𝑁 𝑡
𝑖 = 𝑘]

= 𝜋1
𝑖 ((1− 𝛼)𝑝𝑖 + (1− (1− 𝛼)𝑝𝑖)𝛿𝑖) +

∑︁
𝑘≥2

𝜋𝑘
𝑖 P[𝑁 𝑡+1

𝑖 = 0|𝑁 𝑡
𝑖 = 𝑘]

≤ 𝜋1
𝑖 ((1− 𝛼)𝑝𝑖 + 𝛿𝑖) +

∑︁
𝑘≥2

𝜋𝑘
𝑖 𝛿𝑖

≤
∑︁
𝑘≥1

𝜋𝑘
𝑖 ((1− 𝛼)𝑝𝑖 + 𝛿𝑖) = (1− 𝜋0

𝑖 )((1− 𝛼)𝑝𝑖 + 𝛿𝑖)

(8.4)

Therefore 𝜋0
𝑖 ≤

(1−𝛼)𝑝𝑖+𝛿𝑖
𝑝𝑖+𝛿𝑖

.

8.3 Dynamic programming and Reinforcement Learning

In this section, we change focus from trying to find algorithms which perform well when

compared to the Offline algorithm 𝒪, and instead we try to approximate the optimal online

algorithm.

Efficient priority computation

In Chapter 3 we described three priority mechanisms that resemble those used in practice by

kidney exchange programs. By and large, these priority mechanisms are designed to achieve
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two goals. The first is to increase the odds of socially desirable outcomes (such as a child

receiving a kidney). This is a consideration that is independent from the dynamic nature

of the problem, and we model this through the weights in the compatibility graph (more

desirable outcomes receive a higher weight).

The second objective is to prevent suboptimal matches that would occur under a greedy

algorithm.1 While these priorities are typically computed manually, there have also been at-

tempts to compute them through exhaustive search methods [45]. In chapter 7, we introduce

a new idea of opportunistic batching which tries to keep some vertices waiting when they

have a directed edge towards a hard-to-match agent. This “dynamic” priority system differs

from a “static” priority system where waiting and priorities are determined by an agent’s

characteristics rather than by the compatibility graph configuration.

Our main idea in this section is to formulate a flexible yet powerful formulation that

enables us to automatically compute the priorities in order to prevent sub-optimal matches.

Markov decision process

Recall that when the departure process is memoryless, the state of the system can be com-

pactly represented by the vector N(𝑡) = (𝑁𝑥(𝑡))𝑥∈𝑇 , where 𝑁𝑥(𝑡) represents the number of

vertices of type 𝑥 at time 𝑡. In Dynamic Programming terms, this means that our dynamic

matching problem is a (fully observable) Markov Decision Process. We will say that 𝑁 is

the the state of the system and belongs to the state space 𝒮 = N|𝑇 |.

For a given matching rule 𝑅, we will say that 𝐴 ∈ 𝒮 is a feasible allocation for state 𝑁

if and only if for all 𝑥, 𝐴𝑥 ≤ 𝑁𝑥, and there exists a set 𝑚1, ...,𝑚𝑘 of disjoint valid matchings

(according to rule 𝑅) such that
∑︀

𝑘 I𝑥∈𝑚𝑘
= 𝐴𝑥. We will say that the set of all such feasible

allocations 𝒜(𝑁 ) is the decision space at state 𝑁 .

Observe that in this setting, we can relax the assumption that the graph needs to be

undirected. We can also consider more flexible matching rules, and allow for instance several

participants to trade together.

1For example, there is concern that blood type O donor may inefficiently donate to a blood type A patient
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8.3.1 Approximating the optimal value function

Recall that we use 𝑣(𝐴) to denote the value of an allocation 𝑀 . Using the notation above,

the greedy algorithm solves at each time step the following maximization problem:

max
𝐴∈𝒜

𝑣(𝐴). (8.5)

Optimal Online Algorithm

For any algorithm, we can define an associated value function 𝐽 : 𝒮 ↦→ R. For any state 𝑁 ,

𝐽(𝑁 ) represents the expected value from using the algorithm starting in state 𝑁 . Although

we are interested in the algorithm that maximizes the expected reward on average in the

long run, results from the Dynamic Programming literature [124] allow us to consider the

discounted version of the problem with a discount factor 𝛿 close to 1.

We can further define the optimal value function implicitely using Bellman’s equation:

𝐽*(𝑁(𝑡)) = max
𝐴∈𝒜(𝑁(𝑡))

𝑣(𝐴) + 𝛿E [𝐽*(𝑁(𝑡+ 1))]

= max
𝐴∈𝒜(𝑁(𝑡))

𝑣(𝐴) + 𝛿E [𝐽* (𝑁(𝑡)−𝐷(𝑁(𝑡)− 𝐴)− 𝐴)]
(8.6)

Where 𝐷(𝑁(𝑡)−𝐴) is a random variable corresponding to the arrivals between times 𝑡 and

𝑡 + 1, minus the departures of unmatched vertices. We use the convention that if 𝑆 ̸∈ N𝐼

then 𝐽(𝑆) = −∞.

The key difficulty in finding an approximate solution to (8.6) is twofold: the state 𝒮 can

be very high dimensional (when there are many different types in 𝑇 ), and the decision space

𝒜 is even larger and has a combinatorial structure. In the rest of this section we will explore

different ideas from the approximate dynamic programming and the reinforcement learning

literature, and see how they perform empirically.
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Linear Value Function Approximation

One simple idea is to approximate 𝐽* with a function ̃︀𝐽(𝑆) that is linear in 𝑁 . We then

compute for each type 𝑥 a shadow price 𝑣𝑥, and set ̃︀𝐽(𝑁) =
∑︀

𝑥 𝑣𝑥𝑁𝑥. We can think of 𝑣𝑥

as the discounted expected value of having a vertex of type 𝑥 in the graph in the future.

Assuming the prices 𝑣 are known, this leads to a nice simplification of (8.6):

̃︀𝐽(𝑁(𝑡)) = max
𝐴∈𝒜(𝑁(𝑡))

𝑣(𝐴) + 𝛿E
[︁ ̃︀𝐽(𝑁(𝑡)−𝐷(𝑁(𝑡)− 𝐴)− 𝐴)

]︁
. (8.7)

= max
𝐴∈𝒜(𝑁(𝑡))

(︃
𝑣(𝐴)−

∑︁
𝑥

𝛿(1− 𝜃𝑥)𝑣𝑥𝐴𝑥

)︃
+ 𝛿E

[︁ ̃︀𝐽(𝑁(𝑡)−𝐷(𝑁(𝑡)))
]︁
. (8.8)

Where we used the fact that E [𝐷(𝑁 − 𝐴)] = E [𝐷(𝑁)] − 𝜃𝐴, the linearity of ̃︀𝐽 , and

the linearity of expectation. This means that conditional on knowing the values 𝑣𝑥, each

allocation can be found by solving the following one stage problem:

𝐴 = argmax𝐴∈𝒜(𝑁(𝑡))𝑣(𝐴)− 𝛿
∑︁
𝑥

(1− 𝜃𝑥)𝐴𝑥𝑣𝑥 (8.9)

If the original "greedy" problem in (8.5) can be framed as a linear (or mixed integer)

program, then so can the problem in (8.9). See for example (8.2).

Computing the shadow prices

Computing 𝑣 can be done using the temporal difference (TD) algorithm. We can measure

the error based on Bellman’s equation:

𝜖𝑡 = 𝑐𝑇x𝑡 + 𝛿𝐽(𝑁𝑡+1)− 𝐽(𝑁𝑡)
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Where 𝑁𝑡+1 = 𝑁𝑡−𝐴𝑡−𝐷(𝑁𝑡−𝐴𝑡). The next step is to update the shadow prices according

to a stochastic gradient descent step:

𝑣𝑖𝑡+1 = 𝑣𝑖𝑡 + 𝛼𝑡𝜖𝑡∇v𝐽(𝑆𝑡)

= 𝑣𝑖𝑡 + 𝛼𝑡𝜖𝑡𝑁𝑖(𝑡).
(8.10)

Where 𝛼𝑡 is a step-size satisfying the Robbins-Monro conditions 2. Note that this method

does not require knowledge of the arrival and departure process to function.

8.3.2 Extension: learning from covariates

One difficulty of the previous approach is the necessity of learning a value 𝑣𝑖 for each type.

Deciding on how to define the different types can be quite difficult and this approach does not

leverage the idea that some types may share certain characteristics. To tackle this problem,

we extend our model in the following way.

At each time step 𝑡 = 0, ..., 𝑁 , a set of arriving nodes 𝐴𝑡 is sampled from a distribution

𝒟. Each node 𝑛 ∈ 𝐴𝑡 has a set of characteristics 𝜓(𝑛) ∈ R𝑘. Matching nodes 𝑛1 to 𝑛2 (at

any time) has value 𝑐(𝜓(𝑛1), 𝜓(𝑛2)) ∈ R. At the end of each time period, any unmatched

node 𝑛 departs with probability 𝛿(𝜓(𝑛)).

Value function estimator

Again we can assume an additive value function ̃︀𝐽(𝑆) =∑︀𝑛∈𝑆 𝑣𝜃(𝜓(𝑛)). We can think of 𝑣𝜃

as an estimator of the value of a node with characteristics 𝜓(𝑛). In this case, 𝑣 depends on

a set of parameters 𝜃 to be optimised.

Because we assume the same estimator for all nodes, this allows us to speed-up the

learning process by taking advantage of possible similarities between incoming nodes. (8.10)

2∑︀𝛼𝑡 =∞,
∑︀

𝛼2
𝑡 <∞
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becomes:

𝜃𝑡+1 = 𝜃𝑡 + 𝛼𝑡𝜖𝑡∇v𝐽(𝑆𝑡)

= 𝜃𝑡 + 𝛼𝑡𝜖𝑡
∑︁
𝑛∈𝑆𝑡

𝜕𝑣

𝜕𝜃
(𝜓(𝑛)).

(8.11)

8.4 Conclusion

8.4.1 Key contributions

In this Chapter we introduce a model for dynamic matching with stochastic information.

We provide analysis in terms of competitive ratio for a simple Suggested Matching algorithm

that uses offline statistics to guide the online matching.

In a special case where the compatibility graph is bipartite, and vertices on one side

never depart, we show that SM is optimal. This setting generalizes the traditional online

matching problem in the stochastic case, with applications to online advertising.

In the case of a general graph, we are not able to prove a constant competitive ratio.

We provide a competitive ratio that depends on the largest arrival-to-departure ratio among

possible types of vertices. We expect that a constant-competitive algorithm would need to

use departure information.

We next study this problem using the lens of Dynamic Programming. This then allows

us to extend our model to the case where participant characteristics can take continuous

values (rather than a simple grouping of participants into discrete types).

8.4.2 Future directions

Dynamic matching problems with stochastic information are at the interface between the

fields of online optimization and online learning.
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Theory

From a theoretical perspective, finding a constant-competitive algorithm would show that

having access to stochastic information can offset the issue of heterogeneous departure rates.

In the special case where all types have the same departure rate, finding a 0.5-competitive

algorithm would be a significant step with respect to the Random Order setting. In partic-

ular, this would highlight the value of knowing the underlying arrival distribution.

Practice

In terms of improving dynamic matching algorithms in practice, a few interesting future

directions include: utilizing participant covariates through better learning algorithms. This

would help bridge the theory-practice gap and enable useful algorithms for practitioners.

Adding richer matching constraints, such as long cycles, hypergraph matching, etc, would

also be useful to help bring these algorithm in practical settings.

Finally, having a common set of benchmarks would enable researchers to compare their

results and introduce new algorithms for which theoretical bounds are hard to prove.
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Chapter 9

Concluding Remarks
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To conclude this dissertation we provide a summary of our work, in terms of its practical

implications as well as our technical contributions. We also provide a few directions for

future research.

9.1 Contributions of this Dissertation

9.1.1 Technical contributions

In Chapter 4 we introduce a theoretical model that accounts for both patient-donor hetero-

geneity and the difficulty that some patients have in finding a suitable donor before they need

to depart. Importantly, we make sure that our model still remains tractable analytically.

In Chapter 5 we study a random-graph model of dynamic matching with no departures.

While all agents are potentially compatible with each other, some are hard-to-match and

others are easy-to-match. We use a new method for the analysis of countable-state, two-

dimensional Markov chains. We adopt an asymptotic approach and use this method to prove

tight asymptotic bounds on waiting times, under myopic policies that differ in matching

technology and prioritization.

In Chapter 6 we introduce a new theoretical model for edge-weighted matching when

all vertices arrive online and leave after 𝑑 time periods. Our main contribution is a 0.25-

competitive algorithm. The algorithm randomly selects a subset of agents who will wait until

right before their departure to get matched, and maintains a maximum-weight matching with

respect to the other agents. We show this through a reduction to a bipartite constrained

online matching problem, which may be of independent interest. The primal-dual analysis

of the algorithm hinges on a careful comparison between the initial dual value associated

with an agent when it first arrives, and the final value after d time steps. We also show

that no algorithm is more than 0.5-competitive. We extend the model to the case in which

departure times are drawn independently from an exponential distribution, and extend our

analysis to establish a 0.125-competitive algorithm in this setting.

In Chapter 7 we study a similar setting where vertices arrive in a random order and
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leave after 𝑑 time periods. Our main result is to show that the batching algorithm, which

periodically searches for the highest-value allocation, is 0.279-competitive. Our proof first

reduces the problem to a special graph covering problem. We then show that a lower bound

on the competitive ratio of Batching can be computed as the limit of a sequence of Linear

Programs. Finally, we prove that it is sufficient to explicitly solve a small number of these

Linear Programs, and we provide a computer-aided argument to conclude. We also extend

our proof framework to the setting where the online algorithm is allowed to know which

vertices are going to arrive 𝑙 steps ahead of time. We provide a closed-form competitive

ratio that depends on the ratio of 𝑙/𝑑. In particular we show that if 𝑙 ≥ 𝑑, then the batching

algorithm performs better than any online algorithm that does not have access to the look-

ahead information.

In Chapter 8 we consider the setting where the compatibility graph is sampled from a

distribution which is known to the matching algorithm. We formalize this using a type graph,

from which incoming vertices are sampled. We first provide special cases and corresponding

constant-competitive algorithms. We then frame the problem through the lens of dynamic

programming. We finally show how ideas from approximate dynamic programming can be

leveraged to provide useful algorithms.

9.1.2 Practical insights

In Chapter 3 we conducted simulations using clinical data from two Kidney Exchange pro-

grams in the US to study how the frequency of match-runs impacts the number of transplants

and the average waiting times. We simulate the options facing each of the two programs

by repeated resampling from their historical pools of patient-donor pairs and non-directed

donors, with arrival and departure rates corresponding to the historical data. We find that

longer intervals between match-runs do not increase the total number of transplants, and

that prioritizing highly sensitized patients is more effective than waiting longer between

match-runs for transplanting highly sensitized patients. While we do not find that frequent

match-runs result in fewer transplanted pairs, we do find that increasing arrival rates of new

199



pairs improves both the fraction of transplanted pairs and waiting times.

In Chapter 4 we study how both the priority structure, and the length of cycles impact

the choice of the optimal match frequency. We find that the benefits of small batches have

negligible effect on the number of pairs who can give to hard-to-match patients. In other

words, their in-degree in the compatibility graph stays small. Subsequently, when only cycles

of length 2 are allowed, waiting does not result in a significant number of additional matches.

Surprisingly, we find a different result when cycles of length up to 3 are allowed. Although

the degree of hard-to-match pairs is still small, it is not always zero. In some cases, they

are compatible to receive from another pair but are not able to give back, precluding a 2-

cycle. In that case, waiting for a third pair to arrive may increase the odds of closing the

loop. This suggests that in some circumstances, some amount of targeted waiting may be

beneficial, even when making everyone wait is counter-productive.

In Chapter 5 we find that the market composition is a key factor in the desired matching

technology and prioritization level. When hard-to-match agents arrive less frequently than

easy-to-match ones (i) bilateral matching is almost as efficient as chains, and (ii) assigning

priorities to hard-to-match agents improves their waiting times. When hard-to-match agents

arrive more frequently, chains are much more efficient than bilateral matching and priori-

tization has no impact. We further study the effect of arrival rates on the average waiting

time. Somewhat surprisingly, we find that in a heterogeneous market and under bilateral

matching, increasing arrival rate of hard-to-match agents has a non-monotone effect on wait-

ing times, due to the fact that, under some market compositions, there is an adverse effect

of competition. Our comparative statics shed light on the impact of merging markets and

attracting altruistic agents (that initiate chains) or easy-to-match agents. This work uncov-

ers fundamental differences between heterogeneous and homogeneous dynamic markets, and

potentially helps policy makers to generate insights on the operations of matching markets

such as kidney exchange programs.

In Chapter 6 we introduce new algorithms for dynamic matching. The fact that the

DDA algorithm performs well in the worst case setting rationalizes the re-optimization, or
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rolling-horizon technique often used in practice (See Section 2.4 in particular). Similarly,

although we are not able to show improved competitive ratios for the 𝛼-DDA algorithm, the

good empirical performance can be seen as a justification to give priorities to participants

who have been waiting longer.

In Chapters 7 and 8, we provide numerical simulation results based on datasets of New

York City’s taxis and the National Kidney Registry. Our simulations compare Batching

to the Re-Opt algorithm introduced in Chapter 6. We find that in settings where exact

departure times are known, Re-Opt significantly outperforms both Batching and Greedy.

When only the departure distribution is known, then Re-Opt outperforms Batching on kidney

data, but not on taxi data. Finally, we show that borrowing ideas from 𝛼-DDA in Chapter

6, we can often improve results of Re-Opt.

9.2 Directions for future fesearch

Extensions to new settings

While our focus was on Kidney Exchange and Carpooling, some new models and results

would be very interesting in other centralized settings. Beyond this, our theoretical models in

Chapters 6 and 7 could also be extended to model decentralized platforms where participants

are endowed with a probabilistic model for accepting one matches from a suggested set.

New analysis of existing algorithms

In Chapter 6, we conjecture that our DDA algorithm can be extended to achieve
√
5−1
2

competitive ratio on bipartite constrained graphs. We also think that the PG, DDA and

𝛼-DDA algorithms could also be interesting to study in the random arrival setting.

In Chapter 7, we conjecture that Batching is in fact 0.5-competitive. While the analysis

is likely to be involved, proving this would provide a strong justification for practical use of

this simple algorithm.
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New algorithms and models

In Chapter 6, we study algorithms that reduce the problem to a bipartite constrained graph.

New algorithms that do not require such a reduction could lead to improved performance

guarantees.

We prove that if departures are determined adversarially no algorithm is constant-

competitive. Nonetheless, an interesting line of research would be to design algorithm that

perform well on stochastic models of departures. Similarly, it would be interesting to study

stochastic departures in the random arrival order setting.
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Tomáš Tichỳ. Online competitive algorithms for maximizing weighted throughput of
unit jobs. Journal of Discrete Algorithms, 4(2):255–276, 2006.

205

http://doi.acm.org/10.1145/2482540.2482569


[37] Jean-François Cordeau and Gilbert Laporte. The dial-a-ride problem: models and
algorithms. Annals of operations research, 153(1):29–46, 2007.

[38] William G Couser, Giuseppe Remuzzi, Shanthi Mendis, and Marcello Tonelli. The
contribution of chronic kidney disease to the global burden of major noncommunicable
diseases. Kidney international, 80(12):1258–1270, 2011.

[39] Marry De Klerk, Karin M Keizer, Frans HJ Claas, Marian Witvliet, Bernadette JJM
Haase-Kromwijk, and Willem Weimar. The dutch national living donor kidney ex-
change program. American Journal of Transplantation, 5(9):2302–2305, 2005.

[40] Marry de Klerk, Marian D Witvliet, BJ Haase-Kromwijk, Willem Weimar, and
FH Claas. A flexible national living donor kidney exchange program taking advan-
tage of a central histocompatibility laboratory: the dutch model. Clin Transpl, 69:73,
2008.

[41] Gabrielle Demange, David Gale, and Marilda Sotomayor. Multi-item auctions. Journal
of Political Economy, 94(4):863–872, 1986.

[42] Nikhil R Devanur, Kamal Jain, and Robert D Kleinberg. Randomized primal-dual
analysis of ranking for online bipartite matching. In Proceedings of the twenty-fourth
annual ACM-SIAM symposium on Discrete algorithms, pages 101–107. Society for
Industrial and Applied Mathematics, 2013.

[43] J. P. Dickerson, A. D. Procaccia, and T. Sandholm. Optimizing Kidney Exchange with
Transplant Chains: Theory and Reality. Proc of the eleventh international conference
on autonomous agents and multiagent systems, 2012.

[44] J. P. Dickerson, A. D. Procaccia, and T. Sandholm. Dynamic Matching via Weighted
Myopia with Application to Kidney Exchange. Proc of the6th AAAI Conference on
Artificial Intelligence, pages 1340–1346, 2012.

[45] John P Dickerson, Ariel D Procaccia, and Tuomas Sandholm. Dynamic matching via
weighted myopia with application to kidney exchange. In AAAI, 2012.

[46] John P Dickerson, Ariel D Procaccia, and Tuomas Sandholm. Failure-aware kidney
exchange. In Proceedings of the fourteenth ACM conference on Electronic commerce,
pages 323–340. ACM, 2013.

[47] John P Dickerson, Karthik A Sankararaman, Aravind Srinivasan, and Pan Xu. Al-
location problems in ride-sharing platforms: Online matching with offline reusable
resources. arXiv preprint arXiv:1711.08345, 2017.

[48] John P Dickerson, Ariel D Procaccia, and Tuomas Sandholm. Failure-aware kidney
exchange. Management Science, 2018.

206



[49] Y. Ding, D. Ge, S. He, and C. T. Ryan. A non-asymptotic approach to analyzing kidney
exchange graphs. In Proceedings of the Sixteenth ACM Conference on Economics and
Computation, pages 257–258. ACM, 2015.

[50] L. Doval. A theory of stability in dynamic matching markets. Technical report, mimeo,
2014.

[51] Jack Edmonds. Maximum matching and a polyhedron with 0, 1-vertices. Journal of
research of the National Bureau of Standards B, 69(125-130):55–56, 1965.

[52] Paul W Eggers. Has the incidence of end-stage renal disease in the USA and other
countries stabilized? Current opinion in nephrology and hypertension, 20(3):241–245,
2011.

[53] Yuval Emek, Shay Kutten, and Roger Wattenhofer. Online matching: haste makes
waste! In Proceedings of the forty-eighth annual ACM symposium on Theory of Com-
puting, pages 333–344. ACM, 2016.

[54] J. Feldman, A. Mehta, V. S. Mirrokni, and S. Muthukrishnan. Online stochastic
matching: Beating 1-1/e. In Proceedings of the 50th Annual IEEE Symposium on
Foundations of Computer Science (FOCS), pages 117–126, 2009.

[55] Jon Feldman, Nitish Korula, Vahab Mirrokni, S Muthukrishnan, and Martin Pál.
Online ad assignment with free disposal. In International Workshop on Internet and
Network Economics, pages 374–385. Springer, 2009.

[56] Paolo Ferrari, Claudia Woodroffe, and Frank T Christiansen. Paired kidney donations
to expand the living donor pool: the western australian experience. Medical Journal
of Australia, 190(12):700, 2009.

[57] Paolo Ferrari, Willem Weimar, Rachel J Johnson, Wai H Lim, and Kathryn J Tinckam.
Kidney paired donation: principles, protocols and programs. Nephrology Dialysis
Transplantation, 30(8):1276–1285, 2014.

[58] Daniel Fershtman and Alessandro Pavan. Re-matching, experimentation, and cross-
subsidization. Technical report, mimeo, 2015.

[59] DE Fumo, V Kapoor, LJ Reece, SM Stepkowski, JE Kopke, SE Rees, C Smith,
AE Roth, AB Leichtman, and MA Rees. Historical matching strategies in kidney
paired donation: The 7-year evolution of a web-based virtual matching system. Amer-
ican Journal of Transplantation, 15(10):2646–2654, 2015.

[60] D. Gale and L. L. Shapley. College Admissions and the Stability of Marriage. American
Mathematical Monthly, 69:9–15, 1962.

207



[61] G. Goel and A. Mehta. Online budgeted matching in random input models with ap-
plications to adwords. In Proceedings of the nineteenth annual ACM-SIAM symposium
on Discrete algorithms (SODA), pages 982–991, 2008.

[62] Itai Gurvich and Amy Ward. On the dynamic control of matching queues. Stochastic
Systems, 4(2):479–523, 2014.

[63] Bruce Hajek. On the competitiveness of on-line scheduling of unit-length packets with
hard deadlines in slotted time. In Proceedings of the 2001 Conference on Information
Sciences and Systems, 2001.

[64] Ruthanne L Hanto, William Reitsma, and Francis L Delmonico. The development of
a successful multiregional kidney paired donation program. Transplantation, 86(12):
1744–1748, 2008.

[65] Ming Hu and Yun Zhou. Dynamic type matching. 2016.

[66] Zhiyi Huang, Ning Kang, Zhihao Gavin Tang, Xiaowei Wu, Yuhao Zhang, and Xue
Zhu. How to match when all vertices arrive online. In Proceedings of the 50th Annual
ACM SIGACT Symposium on Theory of Computing, pages 17–29. ACM, 2018.

[67] P. Jaillet and X. Lu. Online stochastic matching: New algorithms with better bounds.
Mathematics of Operations Research, 39(3):624–646, 2013.

[68] Łukasz Jeż, Fei Li, Jay Sethuraman, and Clifford Stein. Online scheduling of packets
with agreeable deadlines. ACM Transactions on Algorithms (TALG), 9(1):5, 2012.

[69] Rachel J Johnson, Joanne E Allen, Susan V Fuggle, J Andrew Bradley, Chris Rudge,
et al. Early experience of paired living kidney donation in the united kingdom. Trans-
plantation, 86(12):1672–1677, 2008.

[70] S.V. Kadam and M.H. Kotowski. Multi-period matching. Technical report, Mimeo,
2014.

[71] Edward H Kaplan. Analyzing tenant assignment policies. Management science, 33(3):
395–408, 1987.

[72] R. M Karp, U. V. Vazirani, and V. V. Vazirani. An optimal algorithm for on-line
bipartite matching. In Proceedings of the twenty-second annual ACM symposium on
Theory of computing (STOC), pages 352–358, 1990.

[73] Alexander Kleiner, Bernhard Nebel, and Vittorio A Ziparo. A mechanism for dynamic
ride sharing based on parallel auctions. In IJCAI, volume 11, pages 266–272, 2011.

[74] Harold W Kuhn. The hungarian method for the assignment problem. Naval Research
Logistics (NRL), 2(1-2):83–97, 1955.

208



[75] Benny Lehmann, Daniel Lehmann, and Noam Nisan. Combinatorial auctions with
decreasing marginal utilities. Games and Economic Behavior, 55(2):270–296, 2006.

[76] J. Leshno. Dynamic Matching in Overloaded Waiting Lists. Working paper, 2014.

[77] Fei Li, Jay Sethuraman, and Clifford Stein. An optimal online algorithm for packet
scheduling with agreeable deadlines. In Proceedings of the sixteenth annual ACM-SIAM
symposium on Discrete algorithms, pages 801–802. Society for Industrial and Applied
Mathematics, 2005.

[78] Han Li, Mark D Stegall, Patrick G Dean, Edward T Casey, Kunam S Reddy, Hasan A
Khamash, Raymond L Heilman, Martin L Mai, C Burcin Taner, Catherine L Kosberg,
et al. Assessing the efficacy of kidney paired donationâĂŤperformance of an integrated
three-site program. Transplantation, 98(3):300–305, 2014.

[79] Will Ma and David Simchi-Levi. Online resource allocation under arbitrary arrivals:
Optimal algorithms and tight competitive ratios. 2017.

[80] Shafi Malik and Edward Cole. Foundations and principles of the canadian living donor
paired exchange program. Canadian journal of kidney health and disease, 1(1):6, 2014.

[81] V. H. Manshadi, S. Oveis-Gharan, and A. Saberi. Online stochastic matching: online
actions based on offline statistics. In Proceedings of the Twenty-Second Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA), pages 1285–1294, 2011.

[82] Aranyak Mehta. Online matching and ad allocation. Foundations and Trends R○ in
Theoretical Computer Science, 8(4):265–368, 2013.

[83] Aranyak Mehta, Amin Saberi, Umesh Vazirani, and Vijay Vazirani. Adwords and
generalized online matching. Journal of the ACM (JACM), 54(5):22, 2007.

[84] Herwig-Ulf Meier-Kriesche, Friedrich K Port, Akinlolu O Ojo, Steven M Rudich,
Julie A Hanson, Diane M Cibrik, Alan B Leichtman, and Bruce Kaplan. Effect of
waiting time on renal transplant outcome. Kidney international, 58(3):1311–1317,
2000.

[85] ML Melcher, DB Leeser, HA Gritsch, J Milner, S Kapur, S Busque, JP Roberts,
S Katznelson, W Bry, H Yang, et al. Chain transplantation: initial experience of a
large multicenter program. American Journal of Transplantation, 12(9):2429–2436,
2012.

[86] H. Mendelson. Market Behavior in a Clearing House. Econometrica, 50(6):1505–1524,
1982.

[87] Sean P Meyn and Richard L Tweedie. Stability of markovian processes iii: Foster–
lyapunov criteria for continuous-time processes. Advances in Applied Probability, 25
(03):518–548, 1993.

209



[88] M. Molinaro and R. Ravi. Kidney Exchanges and the Query-commit Problem.
Manuscript, 2013.

[89] Robert A Montgomery, Andrea A Zachary, Lloyd E Ratner, Dorry L Segev, Janet M
Hiller, Julie Houp, Mathew Cooper, Louis Kavoussi, Thomas Jarrett, James Burdick,
et al. Clinical results from transplanting incompatible live kidney donor/recipient pairs
using kidney paired donation. Jama, 294(13):1655–1663, 2005.

[90] Robert A Montgomery, Sommer E Gentry, William H Marks, Daniel S Warren, Janet
Hiller, Julie Houp, Andrea A Zachary, J Keith Melancon, Warren R Maley, Hamid
Rabb, et al. Domino paired kidney donation: a strategy to make best use of live
non-directed donation. The Lancet, 368(9533):419–421, 2006.

[91] Meguid El Nahas. The global challenge of chronic kidney disease. Kidney international,
68(6):2918–2929, 2005.

[92] Mohammadreza Nazari and Alexander L Stolyar. Reward maximization in general
dynamic matching systems. arXiv preprint arXiv:1608.01646, 2016.

[93] A. Nikzad, M. Akbarpour, M. A. Rees, and A. E. Roth. Financing transplants’ costs
of the poor: A dynamic model of global kidney exchange. Technical report, Stanford
University Working Paper, 2017.

[94] Michael Ostrovsky and Michael Schwarz. Carpooling and the economics of self-driving
cars. Technical report, National Bureau of Economic Research, 2018.

[95] Erhun Ozkan and Amy R Ward. Dynamic matching for real-time ridesharing. 2016.

[96] K Park, SI Kim, JI Moon, and YS Kim. Exchange donor program in kidney trans-
plantation. Transplantation, 65(5):161, 1998.

[97] Marco Pavone, Stephen L Smith, Emilio Frazzoli, and Daniela Rus. Robotic load
balancing for mobility-ondemand systems. Int J Rob Res, 2012.

[98] Tomás Prieto-Rumeau and Onésimo Hernández-Lerma. Uniform ergodicity of
continuous-time controlled markov chains: A survey and new results. Annals
of Operations Research, 241(1):249–293, 2016. ISSN 1572-9338. doi: 10.1007/
s10479-012-1184-4. URL http://dx.doi.org/10.1007/s10479-012-1184-4.

[99] Felix T Rapaport. The case for a living emotionally related international kidney donor
exchange registry. In Transplantation proceedings, volume 18, page 5, 1986.

[100] M. A. Rees, J. E. Kopke, R. P. Pelletier, D. L. Segev, M. E. Rutter, A. J. Fabrega,
J. Rogers, O. G. Pankewycz, J. Hiller, A. E. Roth, T. Sandholm, M. U. Ünver, and
R. A. Montgomery. A non-simultaneous extended altruistic donor chain. New England
Journal of Medecine, 360:1096–1101, 2009.

210

http://dx.doi.org/10.1007/s10479-012-1184-4


[101] Michael A Rees, Jonathan E Kopke, Ronald P Pelletier, Dorry L Segev, Matthew E
Rutter, Alfredo J Fabrega, Jeffrey Rogers, Oleh G Pankewycz, Janet Hiller, Alvin E
Roth, et al. A nonsimultaneous, extended, altruistic-donor chain. New England Journal
of Medicine, 360(11):1096–1101, 2009.

[102] A. E. Roth. What have we learned from market design? Economic Journal, 118:
285–310, 2008.

[103] A. E. Roth, T. Sönmez, and M. U. Ünver. Kidney exchange. Quarterly Journal of
Economics, 119:457–488, 2004.

[104] A. E. Roth, T. Sönmez, and M. U. Ünver. A kidney exchange clearinghouse in New
England. American Economic Review Papers and Proceedings, 95(2):376–380, 2005.

[105] A. E. Roth, T. Sönmez, and M. U. Ünver. Pairwise kidney exchange. Journal of
Economic Theory, 125:151–188, 2005.

[106] A. E. Roth, T. Sönmez, M. U. Ünver, F. L. Delmonico, and S. L. Saidman. Utilizing list
exchange and nondirected donation through chain kidney paired donations. American
Journal of Transplantation, 6:2694–2705, 2006.

[107] A. E. Roth, T. Sönmez, and M. U. Ünver. Efficient kidney exchange: coincidence of
wants in markets with compatibility-based preferences. American Economic Review,
97:828–851, 2007.

[108] Alvin E Roth and Marilda Sotomayor. Two-sided matching. Handbook of game theory
with economic applications, 1:485–541, 1992.

[109] Alvin E Roth, Tayfun Sönmez, M Utku Ünver, Francis L Delmonico, and Susan L
Saidman. Utilizing list exchange and nondirected donation through ‘chain’ paired
kidney donations. American Journal of transplantation, 6(11):2694–2705, 2006.

[110] Paat Rusmevichientong, Mika Sumida, and Huseyin Topaloglu. Dynamic assortment
optimization for reusable products with random usage durations. Technical report,
Working Paper, Cornell Tech, 2017.

[111] S. L. Saidman, A. E. Roth, T. Sönmez, M. U. Ünver, and F. L. Delmonico. Increas-
ing the Opportunity of Live Kidney Donation by Matching for Two and Three Way
Exchanges. Transplantation, 81:773–782, 2006.

[112] Susan L Saidman, Alvin E Roth, Tayfun Sönmez, M Utku Ünver, and Francis L
Delmonico. Increasing the opportunity of live kidney donation by matching for two-
and three-way exchanges. Transplantation, 81(5):773–782, 2006.

[113] Paolo Santi, Giovanni Resta, Michael Szell, Stanislav Sobolevsky, Steven H. Strogatz,
and Carlo Ratti. Quantifying the benefits of vehicle pooling with shareability networks.
In Proc Natl Acad Sci USA, 2014.

211



[114] Michael Schilde, Karl F Doerner, and Richard F Hartl. Metaheuristics for the dy-
namic stochastic dial-a-ride problem with expected return transports. Computers &
operations research, 38(12):1719–1730, 2011.

[115] James Schummer. Influencing waiting lists. Technical report, Technical report, Work-
ing paper, Kellogg School of Management, 2015. 41, 2016.

[116] Dorry L Segev, Sommer E Gentry, J Keith Melancon, and Robert A Montgomery.
Characterization of waiting times in a simulation of kidney paired donation. American
Journal of Transplantation, 5(10):2448–2455, 2005.

[117] Dorry L Segev, Sommer E Gentry, Daniel S Warren, Brigitte Reeb, and Robert A
Montgomery. Kidney paired donation and optimizing the use of live donor organs.
Jama, 293(15):1883–1890, 2005.

[118] J Siegel-Itzkovich. Israel and Cyprus sign accord for shar-
ing kidneys fromlive donors. http://www.jpost.com/Israel-News/
Israel-and-Cyprus-sign-accord-for-sharing-kidneys-from-live-donors-497422,
2017. [Online].

[119] T. Sönmez, U. Ünver, et al. Market design for living-donor organ exchanges: An
economic policy perspective. Oxford Review of Economic Policy, 33(4), 2017.

[120] Tayfun Sönmez and M Utku Ünver. Matching, allocation, and exchange of discrete
resources. In Handbook of social Economics, volume 1, pages 781–852. Elsevier, 2011.

[121] Kevin Spieser, Samitha Samaranayake, Wolfgang Gruel, and Emilio Frazzoli. Shared-
vehicle mobility-ondemand systems: A fleet operatorâĂŹs guide to rebalancing empty
vehicles. In Transportation Research Board 95th Annual Meeting, 2016.

[122] Xuanming Su and Stefanos Zenios. Patient choice in kidney allocation: The role of the
queueing discipline. Manufacturing & Service Operations Management, 6(4):280–301,
2004.

[123] M. Suthanthiran and T. B. Strom. Renal transplantation. New England Journal of
Medecine, page 331:365, 1994.

[124] John N Tsitsiklis and Benjamin Van Roy. On average versus discounted reward
temporal-difference learning. Machine Learning, 49(2-3):179–191, 2002.

[125] UNOS. United network for organ sharing. 2013. URL http://www.unos.org/.

[126] M. U. Ünver. Dynamic Kidney Exchange. Review of Economic Studies, 77(1):372–414,
2010.

[127] USRDS. United states renal data system. 2012. URL http://www.usrds.org/qtr/
default.aspx.

212

http://www.jpost.com/Israel-News/Israel-and-Cyprus-sign-accord-for-sharing-kidneys-from-live-donors-497422
http://www.jpost.com/Israel-News/Israel-and-Cyprus-sign-accord-for-sharing-kidneys-from-live-donors-497422
http://www.unos.org/
http://www.usrds.org/qtr/default.aspx
http://www.usrds.org/qtr/default.aspx


[128] MM Vazifeh, P Santi, G Resta, SH Strogatz, and C Ratti. Addressing the minimum
fleet problem in on-demand urban mobility. Nature, 557(7706):534, 2018.

[129] William Vickrey. Pricing as a tool in coordination of local transportation. In Trans-
portation economics, pages 275–296. NBER, 1965.

[130] Hai Wang. Routing and scheduling for a last-mile transportation system. Transporta-
tion Science, 2017.

[131] Wikipedia contributors. Little’s law., 2018. URL https://en.wikipedia.org/wiki/
Little%27s_law. [Online; accessed 13-August-2018].

[132] Morteza Zadimoghaddam. Online weighted matching: Beating the 𝑓𝑟𝑎𝑐12 barrier.
arXiv preprint arXiv:1704.05384, 2017.

[133] S. A. Zenios. Optimal control of a paired-kidney exchange program. Manage. Sci.,
48(3):328–342, March 2002. ISSN 0025-1909. doi: 10.1287/mnsc.48.3.328.7732. URL
http://dx.doi.org/10.1287/mnsc.48.3.328.7732.

[134] Rick Zhang and Marco Pavone. Control of robotic mobility-on-demand systems: a
queueing-theoretical perspective. In Proceedings of Robotics: Science and Systems
Conference, 2014.

213

https://en.wikipedia.org/wiki/Little%27s_law
https://en.wikipedia.org/wiki/Little%27s_law
http://dx.doi.org/10.1287/mnsc.48.3.328.7732


214



Appendix A

Appendix of Chapter 4

A.1 Additional empirical results.

In Figure A-1 we show the distribution of edges and bilateral cycles in three cases. First we

look at the real compatibility graph formed by agents in the NKR pool. Second, we form two

model graphs while fitting the best parameters based on the data. Figure A-1 shows that

a simple Erdős-Renyi model with the same number of edges has an edge-distribution that

is very concentrated around the mean, contrary to the empirical graph where a significant

number of agents have very few ingoing edges, and even fewer bilateral cycle options. While

our 2-type model is still far from perfect, it captures some of this “sparse” behavior that is

observed in the data.

A.2 Proof of Theorem 1

In order to study the Markov chains Π𝑏
𝜏 and Π𝐺

𝜏 , we define the following random variables:

- 𝐷𝑏
𝜏 and𝐷𝐺

𝜏 represent the number of departures at the end of the 𝜏 ’th batch, respectively

for the 𝑏-batching and greedy policy.

- 𝐴𝜏 represents the number of 𝐻 nodes during batch 𝜏 .
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Figure A-1: These graphs show edge and cycle distributions for three types of graphs. In
blue, the graph is derived from the clinical data with 𝑛 = 1000 pairs that are not under-
demanded. It has 𝑑 = 334780 edges. In red, the graph is an instance of an Erdős-Renyi
random graph with 𝑛 = 1000 and 𝑝 = 𝑑/𝑛2 ≈ 0.33. In this instance it has 335, 000 edges. In
green is an instance of a graph generated using a 2-type model, where node type is drawn
from a bernoulli distribution with parameter 𝜌 = 0.4. Edges to a node of type 𝐻 (L) are
drawn according to a bernoulli with parameter 𝑝𝐻 = 0.02 (𝑝𝐸 = 0.5). In this instance it has
317, 000 edges. Left: distribution of the ingoing edges for three types of graphs. Right:
distribution of the number of bilateral cycle options for all three types of graphs.
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- Recall that 𝜇𝑏
2(𝜏) and 𝜇𝐺

2 (𝜏) represent the number of 𝐻 nodes matched in batch 𝜏

when only 2-cycles are allowed.

For the 𝑏-batching algorithm, using the notation defined we have: Π𝑏
𝜏+1 = Π𝑏

𝜏+𝐴𝜏−𝐷𝑏
𝜏−𝜇𝑏

2(𝜏)

Similarly for greedy: Π𝐺
𝑡+1 = Π𝐺

𝜏 + 𝐴𝜏 −𝐷𝐺
𝜏 − 𝜇𝐺

2 (𝜏).

Let Δ𝜏 = Π𝑏
𝜏 − Π𝐺

𝜏 . We study E
[︀
Δ𝑡+1|Π𝑏

𝜏 ,Π
𝐺
𝜏

]︀
.

E
[︀
Δ𝑡+1|Π𝑏

𝜏 ,Π
𝐺
𝜏

]︀
= (1− 𝑏𝑞𝐻)Δ𝑡 − E

[︀
𝜇𝑏
2(𝜏)− 𝜇𝐺

2 (𝜏)|Π𝑏
𝜏 ,Π

𝐺
𝜏

]︀
(A.1)

We will focus on the last term. Let ̃︀𝜇2(Π
𝐺
𝜏 ) be the number of matches that would have

been conducted, if the pool had started with Π𝐺
𝜏 H nodes and had used 𝑏-batching at step 𝜏 .

E
[︀
𝜇𝑏
2(𝜏)− 𝜇𝐺

2 (𝜏)|Π𝑏
𝜏 ,Π

𝐺
𝜏

]︀
= E

[︀
𝜇𝑏
2(𝜏)− ̃︀𝜇2(Π

𝐺
𝜏 )|Π𝑏

𝜏 ,Π
𝐺
𝜏

]︀
+ E

[︀̃︀𝜇2(Π
𝐺
𝜏 )− 𝜇𝐺

2 (𝜏)|Π𝑏
𝜏 ,Π

𝐺
𝜏

]︀
The idea is to upper-bound E

[︀
𝜇𝑏
2(𝜏)− ̃︀𝜇2(Π

𝐺
𝜏 )|Π𝑏

𝜏 ,Π
𝐺
𝜏

]︀
and E

[︀̃︀𝜇2(Π
𝐺
𝜏 )− 𝜇𝐺

2 (𝜏)|Π𝑏
𝜏 ,Π

𝐺
𝜏

]︀
separately, and then prove bounds on E [Δ∞].

Lemma 6. Using only 2-ways, we have: E
[︀̃︀𝜇2(Π

𝐺
𝜏 )− 𝜇𝐺

2 (𝜏)|Π𝑏
𝜏 ,Π

𝐺
𝜏

]︀
≤ 𝜆1𝑝𝐻 where 𝜆1 is

defined in (A.5).

Proof. First ignore all the 𝐿 − 𝐿 edges, and consider the bipartite graph between the ar-

riving 𝐸 nodes and all the 𝐻 nodes. Let 𝑀 𝑏 and 𝑀𝐺 be the matching formed respectively

by 𝑏-batching and greedy in this graph. Note that based on the priorities set, 𝑏-batching

finds a maximum matching in 𝑀 𝑏. Consider 𝑀 𝑏 ∪𝑀𝐺; this consists of disjoint (i) even-

length paths/cycles (ii) odd-length paths with one more edge from 𝑀 𝑏. Note that having an

odd-length path that has more edges from 𝑀𝐺 would contradict with 𝑀 𝑏 being maximum

matching. In order to bound the difference between size of 𝑀 𝑏 and 𝑀𝐺, we bounds the

number of odd-length paths.

First let us bound the number of such paths with length at least 3; Such a path would

include at least one 𝐻 node with degree at least 2. Therefore an upper-bound on the number
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of 𝐻 nodes with degree at least 2 also serves as an upper bound on the number of these

paths.

Consider a graph with 𝑁𝐻/𝑁𝐸 pairs of type 𝐻/𝐸, and consider an 𝐻 node 𝑣. We first

compute the probability that node 𝑣 has at least 2 neighbors among the 𝐸 nodes.

P [degree of 𝑣 ≥ 2|𝑁𝐻 , 𝑁𝐸] =

𝑁𝐸∑︁
𝑗=2

(︂
𝑁𝐸

𝑗

)︂
(𝑝𝐻𝑝𝐸)

𝑗 (1− 𝑝𝐻𝑝𝐸)𝑁𝐸−𝑗

= 1− (1− 𝑝𝐻𝑝𝐸)𝑁𝐸 −𝑁𝐸𝑝𝐻𝑝𝐸 (1− 𝑝𝐻𝑝𝐸)𝑁𝐸−1

≤ 1− [1−𝑁𝐸𝑝𝐻𝑝𝐸]−
[︀
𝑁𝐸𝑝𝐻𝑝𝐸 −𝑁𝐸(𝑁𝐸 − 1) (𝑝𝐻𝑝𝐸)

2]︀
≤ 𝑁2

𝐸 (𝑝𝐻𝑝𝐸)
2 , (A.2)

where in the second inequality we used the following Claim:

Claim 9. Let 𝑥 ∈ [0, 1] and a positive integer 𝑖, then (1− 𝑥)𝑖 ≥ 1− 𝑌 𝑥.

Proof. The function 𝑥 ↦→ (1− 𝑥)𝑖 is convex.

Next we take the expectation with respect to 𝑁𝐸 and 𝑁𝐻 . Given the pool size Π𝐺
𝜏 , we

have 𝑁𝐻 = Π𝐺
𝜏 −𝐷𝐺

𝑡 + (𝑏−𝑁𝐸). Thus we have:

E
[︀
# 𝐻 nodes with degree ≥ 2|Π𝑏

𝜏 ,Π
𝐺
𝜏

]︀
= (𝑝𝐻𝑝𝐸)

2 E
[︀(︀
Π𝐺

𝜏 −𝐷𝐺
𝑡 + (𝑏−𝑁𝐸)

)︀
𝑁2

𝐸

]︀
= (𝑝𝐻𝑝𝐸)

2 {︀(1− 𝑏𝑞𝐻)Π𝐺
𝜏 E
[︀
𝑁2

𝐸

]︀
+ E

[︀
𝑏𝑁2

𝐸

]︀
− E

[︀
𝑁3

𝐸

]︀}︀
≤ (𝑝𝐻𝑝𝐸)

2 {︀(1− 𝑏𝑞𝐻)Π𝐺
𝜏 (1− 𝜌)𝑏2 + (1− 𝜌)𝑏3 − (1− 𝜌)3𝑏3

}︀
(A.3)

where in the first equality we used the fact that E
[︀
𝐷𝐺

𝜏 |Π𝑏
𝜏 ,Π

𝐺
𝜏

]︀
= 𝑏𝑞𝐻Π

𝐺
𝜏 , and that 𝐷𝐺

𝑡 and

𝑁𝐸 are independent. In the first inequality we used Claim 10 and the fact that 0 ≤ 𝑁𝐸 ≤ 𝑏.

Claim 10. Suppose 𝑓(·) is a monotone convex function and 𝑥 ∈ [𝑙, 𝑟]. We have: 𝑓(E [𝑥]) ≤

E [𝑓(𝑥)] ≤ 𝑓(𝑟)−𝑓(𝑙)
𝑟−𝑙

(E [𝑥]− 𝑙) + 𝑓(𝑙).
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Proof. First inequality is just Jensen’s. The second one follows from observing that 𝑓(𝑥)−

𝑓(𝑙) ≤ 𝑓(𝑟)−𝑓(𝑙)
𝑟−𝑙

(𝑥− 𝑙), and taking expectation from both sides.

Next, we bound the number of length-1 paths in 𝑀 𝑏 ∪𝑀𝐺; such an edge can only exist

if an 𝐸 node arriving at a time 𝑖 cannot give to any of the 𝐻 nodes already in the pool,

but can form a 2-way with an 𝐻 node that arrives after 𝑖 but before the end of the batch.

Consider 𝐸 node arriving at time 𝑡 = 𝜏𝑏 + 𝑖; the expected number of 2-cycles it will form

with an arriving 𝐻 node is: (𝑏 − 𝑖)𝜌𝑝𝐻𝑝𝐸. By Markov inequality, probability that node 𝑡

forms at least one 𝐻 − 𝐿 2-cycle is at most (𝑏− 𝑖)𝜌𝑝𝐻𝑝𝐸.

E [# length-1 paths] ≤
𝑏∑︁

𝑖=1

P [node 𝑡 is 𝐿]P [𝑡 forms 2-way with 𝐻 node arriving after 𝑡]

≤ (1− 𝜌)𝜌𝑏
2

2
𝑝𝐻𝑝𝐸. (A.4)

Putting (A.3) and (A.4), we get:

𝜆1 = (1− 𝜌)𝜌𝑏
2

2
𝑝𝐸 + 𝑝2𝐸

{︀
𝑝𝐻(1− 𝑏𝑞𝐻)Π𝐺

𝜏 (1− 𝜌)𝑏2 + 𝑝𝐻(1− 𝜌)𝑏3 − 𝑝𝐻(1− 𝜌)3𝑏3
}︀

(A.5)

Lemma 7. Using only 2-ways, we have: E
[︀
𝜇𝑏
2(𝜏)− ̃︀𝜇2(Π

𝐺
𝜏 )|Π𝑏

𝜏 ,Π
𝐺
𝜏

]︀
≤ 𝜆2𝑝𝐻

(︀
Π𝑏

𝑡 − Π𝐺
𝜏

)︀+,

where 𝜆2 is defined in (A.7).

Proof. If Π𝑏
𝜏 ≤ Π𝐺

𝜏 then if the same 𝑏-batching algorithm is used, coupling the random

realizations allows us to always match more nodes in the pool that had more vertices at the

start of the batch. Thus 𝜇𝑏
2(𝜏) ≤ ̃︀𝜇2(Π

𝐺
𝜏 )

Now consider the case Π𝑏
𝜏 ≥ Π𝐺

𝜏 . First ignore all the 𝐿 − 𝐿 edges, and consider the

bipartite graph between the arriving 𝐸 nodes and all the 𝐻 nodes in each pool. Suppose that

the batch includes 𝑁𝐸 pairs of type 𝐸. For simplicity of notation let 𝑋 = Π𝐺
𝜏 −𝐷𝐺

𝑡 +(𝑏−𝑁𝐸)
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and 𝑌 =
(︀
Π𝑏

𝜏 −𝐷𝑏
𝑡

)︀
−
(︀
Π𝐺

𝜏 −𝐷𝐺
𝑡

)︀
. Consider a pool with 𝑋 + 𝑌 𝐻 nodes; partition

the pool into two sets, set 1 with size 𝑋 and set 2 with size 𝑌 . Consider an 𝐸 node

𝑣; the probability that 𝑣 cannot match set 1, but can match a node in set 2 is at most:

(1− 𝑝𝐻𝑝𝐸)𝑋
[︁
1− (1− 𝑝𝐻𝑝𝐸)𝑌

]︁
. Therefore the expected size of maximum matching in the

bipartite graph with 𝑋+𝑌 nodes is at most 𝑁𝐸 (1− 𝑝𝐻𝑝𝐸)𝑋
[︁
1− (1− 𝑝𝐻𝑝𝐸)𝑌

]︁
larger than

the one with only 𝑋 nodes.

E
[︀
𝜇𝑏
2(𝜏)− ̃︀𝜇2(Π

𝐺
𝜏 )|Π𝑏

𝜏 ,Π
𝐺
𝜏 , 𝐷

𝑏
𝑡 , 𝐷

𝐺
𝑡

]︀
(A.6)

≤ E
[︁
𝑁𝐸 (1− 𝑝𝐻𝑝𝐸)Π

𝐺
𝜏 −𝐷𝐺

𝑡 +(𝑏−𝑁𝐸)
[︁
1− (1− 𝑝𝐻𝑝𝐸)(Π

𝑏
𝜏−𝐷𝑡)−(Π𝐺

𝜏 −𝐷𝐺
𝑡 )
]︁]︁

= (1− 𝑝𝐻𝑝𝐸)Π
𝐺
𝜏 −𝐷𝐺

𝑡 +𝑏
[︁
1− (1− 𝑝𝐻𝑝𝐸)(Π

𝑏
𝜏−𝐷𝑏

𝑡)−(Π𝐺
𝜏 −𝐷𝐺

𝑡 )
]︁
E
[︁
𝑁𝐸 (1− 𝑝𝐻𝑝𝐸)−𝑁𝐸

]︁
≤ (1− 𝑝𝐻𝑝𝐸)Π

𝐺
𝜏 −𝐷𝐺

𝑡 +𝑏 [︀(︀Π𝑏
𝜏 −𝐷𝑡

)︀
−
(︀
Π𝐺

𝜏 −𝐷𝐺
𝑡

)︀]︀
𝑝𝐻𝑝𝐸E

[︁
𝑁𝐸 (1− 𝑝𝐻𝑝𝐸)−𝑁𝐸

]︁
≤ (1− 𝑝𝐻𝑝𝐸)Π

𝐺
𝜏 −𝐷𝐺

𝑡 +𝑏 [︀(︀Π𝑏
𝜏 −𝐷𝑏

𝑡

)︀
−
(︀
Π𝐺

𝜏 −𝐷𝐺
𝑡

)︀]︀
𝑝𝐻𝑝𝐸 (1− 𝑝𝐻𝑝𝐸)−𝑏 (1− 𝜌)𝑏

≤
[︀(︀
Π𝑏

𝜏 −𝐷𝑏
𝑡

)︀
−
(︀
Π𝐺

𝜏 −𝐷𝐺
𝑡

)︀]︀
𝑝𝐻𝑝𝐸(1− 𝜌)𝑏

Where the second inequality uses the Claim 9, the third one holds by applying Claim 10

to the convex function 𝑁𝐸 (1− 𝑝𝐻𝑝𝐸)−𝑁𝐸 for 0 ≤ 𝑁𝐸 ≤ 𝑏, and the last one holds because

(1− 𝑝𝐻𝑝𝐸)Π
𝐺
𝜏 −𝐷𝐺

𝑡 ≤ 1. In order to complete the proof of Lemma 7, we take expectation with

respect to 𝐷𝑏
𝑡 and 𝐷𝐺

𝑡 :

E
[︀
𝜇𝑏
2(𝜏)− ̃︀𝜇2(Π

𝐺
𝜏 )|Π𝑏

𝜏 ,Π
𝐺
𝜏

]︀
≤ (1− 𝑏𝑞𝐻)

(︀
Π𝑏

𝜏 − Π𝐺
𝜏

)︀
𝑝𝐻𝑝𝐸(1− 𝜌)𝑏,

and let:

𝜆2 = (1− 𝑏𝑞𝐻)𝑝𝐸(1− 𝜌)𝑏 (A.7)
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Now note that by Claim 14, we have:
(︀
Π𝑏

𝑡 − Π𝐺
𝜏

)︀+ ≤ 2𝑏. Combining this with Lemma

7, and applying it to (A.1) along with Lemma 6, we get: E
[︀
Δ𝑡+1|Π𝑏

𝜏 ,Π
𝐺
𝜏

]︀
≥ (1− 𝑏𝑞𝐻)Δ𝑡 −

𝜆1𝑝𝐻 − 2𝜆2𝑝𝐻𝑏. Taking expectation over Π𝑏
𝜏 , Π𝐺

𝜏 from both sides we get:

E [Δ𝑡+1] ≥ (1− 𝑏𝑞𝐻)E [Δ𝑡]− E [𝜆1] 𝑝𝐻 − 2E [𝜆2] 𝑝𝐻𝑏 (A.8)

We now use the definition of 𝜆1 from (A.5), and take the expectation:

E [𝜆1] = (1− 𝜌)𝜌𝑏
2

2
𝑝𝐸 + 𝑝2𝐸

{︀
𝑝𝐻(1− 𝑏𝑞𝐻)E

[︀
Π𝐺

𝜏

]︀
(1− 𝜌)𝑏2 + 𝑝𝐻(1− 𝜌)𝑏3 − 𝑝𝐻(1− 𝜌)3𝑏3

}︀
Using auxiliary Lemma 10, we have: E

[︀
Π𝐺

𝜏

]︀
≤ 𝜌/𝑞𝐻 . This yields the following upper-bound

on E [𝜆1]:

𝜆1 = (1− 𝜌)𝜌𝑏
2

2
𝑝𝐸 + 𝑝2𝐸

{︀
(1− 𝑏𝑞𝐻)𝜌(1− 𝜌)𝑏2/𝛼 + 𝑝𝐻(1− 𝜌)𝑏3 − 𝑝𝐻(1− 𝜌)3𝑏3

}︀
.

Substituting this in (A.8), we have:1

E [Δ𝑡+1] ≥ (1− 𝑏𝑞𝐻)E [Δ𝑡]− 𝜆1𝑝𝐻 − 2𝜆2𝑝𝐻𝑏

At 𝑡 = 0, Δ0 = 0, therefore the above recursion implies:

E [Δ∞] ≥ −
𝑝𝐻
(︀
𝜆1 + 2𝜆2𝑏

)︀
𝑏𝑞𝐻

(A.9)

Now the expected match rate in the steady-state for the batching/greedy policy is 𝑏𝜌−

𝑏𝑞𝐻E
[︀
Π𝑏

∞
]︀

and 𝑏𝜌− 𝑏𝑞𝐻E
[︀
Π𝐺

∞
]︀
, therefore (A.9) implies that:

E
[︀
𝜇𝑏
2(∞)

]︀
≤ E

[︀
𝜇𝐺
2 (∞)

]︀
+ 𝑝𝐻𝜆,

1Note that 𝜆2 is independent of Π𝑏
𝜏 , Π𝐺

𝜏
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where 𝜆 = 𝜆1 + 2𝜆2𝑏, completing the proof.

A.3 3-way matching: proof of Theorem 2

Similar to the case for 2-way matching, we focus on the following recursion (As a reminder,

Δ𝜏 = Π𝑏
𝜏 − Π𝐺

𝜏 ).

E
[︀
Δ𝑡+1|Π𝑏

𝜏 ,Π
𝐺
𝜏

]︀
= (1− 𝑏𝑞𝐻)Δ𝑡

− E
[︀
𝜇𝑏
3(𝜏)− ̃︀𝜇3(Π

𝐺
𝜏 )|Π𝑏

𝜏 ,Π
𝐺
𝜏

]︀
− E

[︀̃︀𝜇3(Π
𝐺
𝜏 )− 𝜇𝐺

3 (𝜏)|Π𝑏
𝜏 ,Π

𝐺
𝜏

]︀
(A.10)

Here we lower-bound E
[︀
𝜇𝑏
3(𝜏)− ̃︀𝜇3(Π

𝐺
𝜏 )|Π𝑏

𝜏 ,Π
𝐺
𝜏

]︀
and E

[︀̃︀𝜇3(Π
𝐺
𝜏 )− 𝜇𝐺

3 (𝜏)|Π𝑏
𝜏 ,Π

𝐺
𝜏

]︀
sepa-

rately, and then prove an upper-bound on E [Δ∞].

Lemma 8. Using 3-ways, we have: E
[︀̃︀𝜇3(Π

𝐺
𝜏 )− 𝜇𝐺

3 (𝜏)|Π𝑏
𝜏 ,Π

𝐺
𝜏

]︀
≥ 𝛾1𝑝

2
𝐸 where 𝛾1 is given in

(A.11).

Proof. Suppose 𝑁𝐸 pairs of type 𝐸 arrive in the 𝑡-th batch. Also suppose all the 𝐻 nodes

arriving during the batch arrive at the very beginning.2 Consider the greedy policy; each

time an 𝐸-node arrives 3 cases can happen:

(i) The 𝐸-node can form a 2-way with an 𝐻-node in the pool. If this happens, we label

this node at an 𝐴 node.

(ii) The 𝐸-node cannot form a 2-way but forms at least one outgoing edge to an 𝐻-node.

In this case we label the node as 𝐵 node.

(iii) The arriving 𝐸 nodes does not form any 𝐿−𝐻 edge. We call these nodes 𝐶 nodes.

Now let us consider how different type of 𝐸 nodes match given the priorities set. An 𝐴 node

immediately matches an 𝐻 node and leaves. The 𝑖-th 𝐵/𝐶 node matches the 𝑖+ 1-th 𝐵/𝐶
2This can only help the greedy policy, and has no effect on the batching policy.
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node if 𝑖 is odd, and the 𝑖 − 1-th if even. We show that if the matching sequence includes

a 𝐵2𝑘−1-𝐵2𝑘 pair and a 𝐶2𝑘′−1-𝐶2𝑘′ pair, then with probability of at least 𝑝2𝐸 we could have

matched one more 𝐻 node by waiting until the end of batch: consider 2 cases:

- Case 1: node 𝐵2𝑘−1 and 𝐵2𝑘 have outgoing edges to the same 𝐻 node. In this case

neither 𝐵2𝑘−1 and 𝐵2𝑘 will match each other in a 2-way. Now if we wait with probability

of 2𝑝𝐸 − 𝑝2𝐸 ≥ 𝑝2𝐸 we can form a 3-way including 𝐵2𝑘−1 or 𝐵2𝑘 and 𝐶2𝑘′−1 or 𝐶2𝑘′ .

- Case 2: node 𝐵2𝑘−1 and 𝐵2𝑘 have outgoing edges to different 𝐻 nodes. In this case

𝐵2𝑘−1 and 𝐵2𝑘 can form at most one 3-way. However, if we also see 𝐶2𝑘′−1 and 𝐶2𝑘′

before making matching decisions, with probability of at least 𝑝2𝐸 we can form 2 3-way

matches. 3

In the rest of the proof, we compute the probability that an 𝐸 node gets a label of

𝐴,𝐵, or 𝐶. We then we compute the probability of having 𝐵2𝑘−1-𝐵2𝑘 pairs and 𝐶2𝑘′−1-𝐶2𝑘′

pairs. For simplicity of notation let 𝑋 = Π𝐺
𝜏 − 𝐷𝐺

𝑡 + (𝑏 − 𝑁𝐸) be the total number of

𝐻 nodes in the pool. Probability 𝐸 node being 𝐴 is 𝑝𝐴 ,
[︀
1− (1− 𝑝𝐻𝑝𝐸)𝑋

]︀
, being 𝐵 is

𝑝𝐵 , (1−𝑝𝐻𝑝𝐸)𝑋− (1−𝑝𝐻)𝑋 , and being 𝐶 is 𝑝𝐶 , (1−𝑝𝐻)𝑋 . Consider the first 4 𝐸 nodes.

Probability of having 𝐵1-𝐵2 and 𝐶3-𝐶4 or the reverse is 2𝑝2𝐵𝑝
2
𝐶 . Now considering the whole

batch, in expectation, we have at least 0.5𝑁𝐸𝑝
2
𝐵𝑝

2
𝐶 such subsequences. Therefore the gain of

waiting is at least 0.5𝑁𝐸𝑝
2
𝐵𝑝

2
𝐶𝑝

2
𝐸. The next step is to take expectation with respect to 𝑁𝐸.

3The probability can be larger because node 𝐵1 can have more than one outgoing 𝐿− > 𝐻 edge.
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E
[︀
𝜇𝐺
3 (𝜏)− ̃︀𝜇3(Π

𝐺
𝜏 )|Π𝑏

𝜏 ,Π
𝐺
𝜏 , 𝐷

𝐺
𝜏

]︀
≥ 𝑝2𝐸/2E

[︀
𝑁𝐸𝑝

2
𝐵𝑝

2
𝐶 |Π𝑏

𝜏 ,Π
𝐺
𝜏 , 𝐷

𝐺
𝜏

]︀
= 𝜉E

⎡⎣𝑁𝐸

(︃
1−

(︂
1− 𝑝𝐻

1− 𝑝𝐻𝑝𝐸

)︂𝑋
)︃2

(1− 𝑝𝐻𝑝𝐸)−2𝑁𝐸(1− 𝑝𝐻)−2𝑁𝐸

⎤⎦
≥ 𝜉

(︃
1−

(︂
1− 𝑝𝐻

1− 𝑝𝐻𝑝𝐸

)︂Π𝐺
𝜏 −𝐷𝐺

𝜏

)︃2

E
[︀
𝑁𝐸(1− 𝑝𝐻𝑝𝐸)−2𝑁𝐸(1− 𝑝𝐻)−2𝑁𝐸

]︀
≥ 𝜉

(︃
1−

(︂
1− 𝑝𝐻

1− 𝑝𝐻𝑝𝐸

)︂Π𝐺
𝜏 −𝐷𝐺

𝜏

)︃2

(1− 𝜌)𝑏(1− 𝑝𝐻𝑝𝐸)−2(1−𝜌)𝑍(1− 𝑝𝐻)−2(1−𝜌)𝑍

≥ 𝑝2𝐸
2
(1− 𝜌)𝑏(1− 𝑝𝐻𝑝𝐸)2(𝜌Π

𝐺
𝜏 +𝑍)(1− 𝑝𝐻)2(𝜌Π

𝐺
𝜏 +𝑍)

(︃
1−

(︂
1− 𝑝𝐻

1− 𝑝𝐻𝑝𝐸

)︂Π𝐺
𝜏

)︃2 [︂
1− 𝐷𝐺

𝜏

Π𝐺
𝜏

]︂2

where we used the shorthand 𝜉 =
𝑝2𝐸
2
(1 − 𝑝𝐻𝑝𝐸)2(𝑋+𝑁𝐸)(1 − 𝑝𝐻)2(𝑋+𝑁𝐸). The inequality in

the third line follows from the fact that the function
(︁
1−

(︁
1−𝑝𝐻

1−𝑝𝐻𝑝𝐸

)︁𝑥)︁
is decreasing in 𝑥.

The inequality in the forth line follows form the Jensen’s inequality. Finally in the last line

we used the following:

𝑝2𝐸
2
(1− 𝑝𝐻𝑝𝐸)2(𝑋+𝑁𝐸) ≥ 𝑝2𝐸

2
(1− 𝑝𝐻𝑝𝐸)2(Π

𝐺
𝜏 +𝑏),

𝑝2𝐸
2
(1− 𝑝𝐻)2(𝑋+𝑁𝐸) ≥ 𝑝2𝐸

2
(1− 𝑝𝐻)2(Π

𝐺
𝜏 +𝑏), and(︃

1−
(︂

1− 𝑝𝐻
1− 𝑝𝐻𝑝𝐸

)︂Π𝐺
𝜏 −𝐷𝐺

𝜏

)︃2

≥

(︃
1−

(︂
1− 𝑝𝐻

1− 𝑝𝐻𝑝𝐸

)︂Π𝐺
𝜏

)︃2 [︂
1− 𝐷𝐺

𝜏

Π𝐺
𝜏

]︂2
.
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The final step is to take exception with respect to 𝐷𝐺
𝜏 :

E
[︀
𝜇𝐺
3 (𝜏)− ̃︀𝜇𝐺

3 (𝜏)|Π𝑏
𝜏 ,Π

𝐺
𝜏

]︀
≥ 𝜁

(︃
1−

(︂
1− 𝑝𝐻

1− 𝑝𝐻𝑝𝐸

)︂Π𝐺
𝜏

)︃2

E

[︃[︂
1− 𝐷𝐺

𝜏

Π𝐺
𝜏

]︂2]︃

≥ 𝜁

(︃
1−

(︂
1− 𝑝𝐻

1− 𝑝𝐻𝑝𝐸

)︂Π𝐺
𝜏

)︃2

(1− 𝑏𝑞𝐻)2,

where we used the shorthand 𝜁 = 𝑝2𝐸
2
(1−𝜌)𝑏(1−𝑝𝐻𝑝𝐸)2(𝜌Π

𝐺
𝜏 +𝑍)(1−𝑝𝐻)2(𝜌Π

𝐺
𝜏 +𝑍). The second

inequality follows from Jensen’s inequality and E
[︀
𝐷𝐺

𝜏 ||Π𝑏
𝜏 ,Π

𝐺
𝜏

]︀
= 𝑏𝑞𝐻Π

𝐺
𝜏 . We complete the

proof by setting:

𝛾1 = 𝜁(1− 𝑏𝑞𝐻)2
(︃
1−

(︂
1− 𝑝𝐻

1− 𝑝𝐻𝑝𝐸

)︂Π𝐺
𝜏

)︃2

(A.11)

Lemma 9. Using 3-ways, we have: E
[︀
𝜇𝑏
3(𝜏)− ̃︀𝜇3(Π

𝐺
𝜏 )|Π𝑏

𝜏 ,Π
𝐺
𝜏

]︀
≥ −𝛾2𝑝𝐻

(︀
Π𝐺

𝜏 − Π𝑏
𝜏

)︀+, where

𝛾2 is defined in (A.12).

Proof. If Π𝑏
𝜏 ≥ Π𝐺

𝜏 then the result follows from a coupling argument similar to Lemma 7.

Now consider the case Π𝐺
𝜏 > Π𝑏

𝜏 . First ignore all the 𝐿 − 𝐿 edges. Suppose the batch

includes 𝑁𝐸 pairs of type 𝐸. For simplicity of notation let 𝑋 = Π𝑏
𝜏 − 𝐷𝑏

𝑡 + (𝑏 − 𝑁𝐸) and

𝑌 = (Π𝐺
𝜏 − 𝐷𝐺

𝑡 ) − (Π𝑏
𝜏 − 𝐷𝑏

𝑡 ). Consider a pool with 𝑋 + 𝑌 𝐻 nodes; partition the pool

into two sets, set 1 with size 𝑋 and set 2 with size 𝑌 . Let us first look at the graph formed

between the 𝑁𝐸 pairs of type 𝐸 and set 1. Similar to the proof of Lemma 8, we label an 𝐸

node 𝐴1/𝐵1/𝐶1 if it forms at least one 2-way/no 2-way but at least one outgoing edge/no

outgoing edge. We can define a similar labeling of 𝐴2/𝐵2/𝐶2 in the graph that includes both

set 1 and set 2. We claim that 𝜇𝐺
3 (𝜏)− 𝜇𝑏

3(𝜏) ≤ |𝐶1| − |𝐶2|, where we abuse the notation

of 𝐶1/𝐶2 to also denote set of 𝐸 nodes with such labels. This follows from the observation

that if an 𝐸 node is labeled 𝐶1 but not 𝐶2 it gets the label of either 𝐴2 or 𝐵2. In either

case it can result in matching at most one more 𝐻 node. The next step involves taking the
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expectation with respect to the labeling and 𝑁𝐸.

E
[︀
𝜇(Π𝐺

𝜏 )− 𝜇(Π𝑏
𝜏 )|Π𝑏

𝜏 ,Π
𝐺
𝜏 , 𝐷

𝑏
𝑡 , 𝐷

𝐺
𝑡

]︀
≤ E

[︀
|𝐶1| − |𝐶2||Π𝑏

𝜏 ,Π
𝐺
𝜏 , 𝐷

𝑏
𝑡 , 𝐷

𝐺
𝑡

]︀
= E

[︀
𝑁𝐸

(︀
(1− 𝑝𝐻)𝑋 − (1− 𝑝𝐻)𝑋+𝑌

)︀
|Π𝑏

𝜏 ,Π
𝐺
𝜏 , 𝐷

𝑏
𝑡 , 𝐷

𝐺
𝑡

]︀
= (1− 𝑝𝐻)Π

𝑏
𝜏+𝑏E

[︀
𝑁𝐸(1− 𝑝𝐻)−𝑁𝐸

(︀
1− (1− 𝑝𝐻)𝑌

)︀
|Π𝑏

𝜏 ,Π
𝐺
𝜏 , 𝐷

𝑏
𝑡 , 𝐷

𝐺
𝑡

]︀
≤ (1− 𝑝𝐻)Π

𝑏
𝜏+𝑏
[︀
(Π𝐺

𝜏 −𝐷𝐺
𝑡 )− (Π𝑏

𝜏 −𝐷𝑏
𝑡 )
]︀
𝑝𝐻E

[︀
𝑁𝐸(1− 𝑝𝐻)−𝑁𝐸 |Π𝑏

𝜏 ,Π
𝐺
𝜏 , 𝐷

𝑏
𝑡 , 𝐷

𝐺
𝑡

]︀
≤ (1− 𝑝𝐻)Π

𝑏
𝜏+𝑏
[︀
(Π𝐺

𝜏 −𝐷𝐺
𝑡 )− (Π𝑏

𝜏 −𝐷𝑏
𝑡 )
]︀
𝑝𝐻(1− 𝑝𝐻)−𝑏(1− 𝜌)𝑏

≤
[︀
(Π𝐺

𝜏 −𝐷𝐺
𝑡 )− (Π𝑏

𝜏 −𝐷𝑏
𝑡 )
]︀
𝑝𝐻(1− 𝜌)𝑏

where the inequality in the forth line follows from Claim 9, and the one in the fifth line

follows from Claim 10 in a similar way we we did in the proof of Lemma 7. The last equality

follows from (1− 𝑝𝐻)Π
𝑏
𝜏 ≤ 1. To complete the proof, we take expectation with respect to 𝐷𝑏

𝑡

and 𝐷𝐺
𝑡 , and let:

𝛾2 = (1− 𝜌)(1− 𝑏𝑞𝐻)𝑏. (A.12)

Auxiliary Claim 14 implies that
(︀
Π𝐺

𝜏 − Π𝑏
𝑡

)︀+ ≤ (︀Π𝐺
𝜏 − Π𝑏

𝑡

)︀
+ 2𝑏. Combining this with

Lemma 9, and also applying Lemma 8 to (A.10), we get:

E
[︀
Δ𝑡+1|Π𝑏

𝜏 ,Π
𝐺
𝜏

]︀
≤ (1− 𝑏𝑞𝐻)Δ𝑡 − 𝛾2𝑝𝐻Δ𝑡 + 2𝛾2𝑝𝐻𝑏− 𝛾1𝑝2𝐸

Taking expectation over Π𝑏
𝜏 , Π𝐺

𝜏 from both sides we get:
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E [Δ𝑡+1] ≤ [1− 𝑏𝑞𝐻 − 𝛾2𝑝𝐻 ]E [Δ𝑡] + 2𝛾2𝑝𝐻𝑏− E [𝛾1] 𝑝
2
𝐸 (A.13)

Note that 𝛾2 given in (A.12) is a constant independent of Π𝑏
𝜏 , Π𝐺

𝜏 . Claim 11 provides a

lower-bound on E [𝛾1]. Together with recursion (A.13) we get:

E [Δ∞] ≤ −𝛾1𝑝
2
𝐸 − 2𝛾2𝑍𝑝𝐻
𝑏𝑞𝐻 + 𝛾2𝑝𝐻

(A.14)

The expected match rate in the steady-state for the 𝑏-batching policy is E
[︀
𝜇𝑏
3(∞)

]︀
=

𝑏𝜌− 𝑏𝑞𝐻E
[︀
Π𝑏

∞
]︀

and for the greedy policy: E
[︀
𝜇𝐺
3 (∞)

]︀
= 𝑏𝜌− 𝑏𝑞𝐻E

[︀
Π𝐺

∞
]︀
. Therefore (A.14)

implies that:

E
[︀
𝜇𝑏
3(∞)

]︀
≥ E

[︀
𝜇𝐺
3 (∞)

]︀
+

(𝛾1𝑝
2
𝐸 − 2𝑏2(1− 𝜌)(1− 𝑏𝑞𝐻)𝑝𝐻)𝛼
𝛼 + (1− 𝜌)(1− 𝑏𝑞𝐻)

,

A.4 Auxiliary claims

Claim 11. Suppose 𝜖 = max
{︁√︁

6𝑞𝐻
0.5𝜌

,
√︁

4𝑞𝐻 [1+(1−𝜌)/𝛼]
0.5𝜌(1−𝑝𝐻𝑝𝐸)

}︁
, and parameters 𝜌, 𝑝𝐻 , 𝑞𝐻 , and 𝑝𝐸

are such that 𝜖 < 1. For 𝑡 > max{ log 0.5
log(1−𝑏𝑞𝐻)

, log 0.5
𝑍 log [(1−𝑞𝐻)(𝜌+(1−𝜌)(1−𝑝𝐻))]

}, we have:

E [𝛾1] ≥ 𝛾1

, 𝜂

(︂
1− 𝑝𝐸

2(1− 𝑝𝐻)

)︂2
[︃
0.72 min

𝑥∈[2(1−𝜖)̃︀𝑙𝜌/𝛼,2(1+𝜖)𝜌/𝛼]
𝑥𝑒−𝑥

]︃2
(A.15)

where ̃︀𝑙 = 0.5(1−𝑝𝐻𝑝𝐸)
1+(1−𝜌)/𝛼

as defined in Lemma 12, and 𝜂 = 1
2
(1− 𝑏𝑞𝐻)2(1−𝑝𝐻𝑝𝐸)2𝜌𝑍(1−𝑝𝐻)2𝜌𝑍.
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Proof.

E [𝛾1] = 𝜂E

⎡⎣(︃(1− 𝑝𝐻𝑝𝐸)Π𝐺
𝜏 (1− 𝑝𝐻)Π

𝐺
𝜏

(︃
1−

(︂
1− 𝑝𝐻

1− 𝑝𝐻𝑝𝐸

)︂Π𝐺
𝜏

)︃)︃2
⎤⎦

≥ 𝜂E

[︃
(1− 𝑝𝐻𝑝𝐸)Π

𝐺
𝜏 (1− 𝑝𝐻)Π

𝐺
𝜏

(︃
1−

(︂
1− 𝑝𝐻

1− 𝑝𝐻𝑝𝐸

)︂Π𝐺
𝜏

)︃]︃2
(A.16)

where the inequality in the second line is by Jensen’s inequality. In the rest we focus on the

E
[︂
(1− 𝑝𝐻𝑝𝐸)Π

𝐺
𝜏 (1− 𝑝𝐻)Π

𝐺
𝜏

(︂
1−

(︁
1−𝑝𝐻

1−𝑝𝐻𝑝𝐸

)︁Π𝐺
𝜏

)︂]︂
and provide a lower bound for this term.

(1− 𝑝𝐻𝑝𝐸)Π
𝐺
𝜏 (1− 𝑝𝐻)Π

𝐺
𝜏

(︃
1−

(︂
1− 𝑝𝐻

1− 𝑝𝐻𝑝𝐸

)︂Π𝐺
𝜏

)︃
= (1− 𝑝𝐻)Π

𝐺
𝜏

(︁
(1− 𝑝𝐻𝑝𝐸)Π

𝐺
𝜏 − (1− 𝑝𝐻)Π

𝐺
𝜏

)︁
≥ (1− 𝑝𝐻)2Π

𝐺
𝜏 −1Π𝐺

𝜏 (1− 𝑝𝐸) 𝑝𝐻

≥ 1− 𝑝𝐸
2(1− 𝑝𝐻)

2𝑝𝐻Π
𝐺
𝜏 𝑒

−2𝑝𝐻Π𝐺
𝜏

where the inequality in the second line follows form applying Claim 12, and the inequality

in the last line follows from log(1 − 𝑝𝐻) ≥ −𝑝𝐻 , multiplying both sides by 2Π𝐺
𝜏 and taking

exponential from both sides. Let 𝜖 be a small positive number, I· be the indicator function,

and ̃︀𝑙 < 1 be the constant defined in Lemma 12.

E
[︁
2𝑝𝐻Π

𝐺
𝜏 𝑒

−2𝑝𝐻Π𝐺
𝜏

]︁
≥ E

[︁
2𝑝𝐻Π

𝐺
𝜏 𝑒

−2𝑝𝐻Π𝐺
𝜏 I(1− 𝜖)̃︀𝑙𝜌/𝑞𝐻 ≤ Π𝐺

𝜏 ≤ (1 + 𝜖)𝜌/𝑞𝐻

]︁
≥ P

[︁
(1− 𝜖)̃︀𝑙𝜌/𝑞𝐻 ≤ Π𝐺

𝜏 ≤ (1 + 𝜖)𝜌/𝑞𝐻

]︁
min

𝑥∈[2(1−𝜖)̃︀𝑙𝜌/𝛼,2(1+𝜖)𝜌/𝛼]
𝑥𝑒−𝑥

=
(︁
1− P

[︁
Π𝐺

𝜏 < (1− 𝜖)̃︀𝑙𝜌/𝑞𝐻]︁− P
[︀
Π𝐺

𝜏 > (1 + 𝜖)𝜌/𝑞𝐻
]︀)︁

min
𝑥∈[2(1−𝜖)̃︀𝑙𝜌/𝛼,2(1+𝜖)𝜌/𝛼]

𝑥𝑒−𝑥
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Using the concentration results of Lemmas 12 and 10 we have for

𝑡 > max

{︂
log 0.5

log(1− 𝑏𝑞𝐻)
,

log 0.5

𝑏 log [(1− 𝑞𝐻) (𝜌+ (1− 𝜌)(1− 𝑝𝐻))]

}︂

E
[︁
2𝑝𝐻Π

𝐺
𝜏 𝑒

−2𝑝𝐻Π𝐺
𝜏

]︁
≥
(︂
1− 𝑒−

0.5𝜖2𝜌
3𝑞𝐻 − 𝑒−

0.5𝜌(1−𝑝𝐻𝑝𝐸)𝜖2

2𝑞𝐻 [1+(1−𝜌)/𝛼]

)︂
min

𝑥∈[2(1−𝜖)̃︀𝑙𝜌/𝛼,2(1+𝜖)𝜌/𝛼]
𝑥𝑒−𝑥.

Substituting this back to (A.16), we have:

E [𝛾1] ≥ 𝜂

(︂
1− 𝑝𝐸

2(1− 𝑝𝐻)

)︂2
[︃(︂

1− 𝑒−
0.5𝜖2𝜌
3𝑞𝐻 − 𝑒−

0.5𝜌(1−𝑝𝐻𝑝𝐸)𝜖2

2𝑞𝐻 [1+(1−𝜌)/𝛼]

)︂
min

𝑥∈[2(1−𝜖)̃︀𝑙𝜌/𝛼,2(1+𝜖)𝜌/𝛼]
𝑥𝑒−𝑥

]︃2
(A.17)

Finally, it follows form the definition of 𝜖 that 𝑒−
0.5𝜖2𝜌
3𝑞𝐻 ≤ 𝑒−2 = 0.1353. Similarly,

𝑒
− 0.5𝜌(1−𝑝𝐻𝑝𝐸)𝜖2

2𝑞𝐻 [1+(1−𝜌)/𝛼] ≤ 𝑒−2 = 0.1353. Substituting this in (A.17), we get:

E [𝛾1] ≥ 𝜂

(︂
1− 𝑝𝐸

2(1− 𝑝𝐻)

)︂2
[︃
0.72 min

𝑥∈[2(1−𝜖)̃︀𝑙𝜌/𝛼,2(1+𝜖)𝜌/𝛼]
𝑥𝑒−𝑥

]︃2

Claim 12. For 𝑌 > 1 and 0 ≤ 𝑥1 ≤ 𝑥2 ≤ 1, we have: (1 − 𝑥1)
𝑌 − (1 − 𝑥2)

𝑌 ≥ 𝑌 (1 −

𝑥2)
𝑌−1(𝑥2 − 𝑥1).

Proof. Consider the function 𝑓(𝑥) = (1−𝑥)𝑌 , and consider 0 ≤ 𝑥1 ≤ 𝑥2 ≤ 1. By mean-value

theorem, there exists 𝜉 ∈ [𝑥1, 𝑥2] such that:

𝑓(𝑥2)− 𝑓(𝑥1) = 𝑓 ′(𝜉)(𝑥2 − 𝑥1)

Function 𝑓(·) is convex and decreasing in [0, 1]. This implies 𝑓 ′(𝜉) ≤ 𝑓 ′(𝑥2) = −𝑌 (1−𝑥2)𝑌−1.
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Therefore,

𝑓(𝑥1)− 𝑓(𝑥2) ≥ 𝑌 (1− 𝑥2)𝑌−1(𝑥2 − 𝑥1).

Claim 13. At any batch step 𝑡 and for both 2-way and 2, 3-way matching , we have:

∙ if Π𝐺
𝜏 − Π𝑏

𝑡 ≥ 0 then Π𝐺
𝜏 − Π𝑏

𝑡 ≥ 𝐷𝐺
𝑡 −𝐷𝑏

𝑡 ≥ 0.

∙ if Π𝐺
𝜏 − Π𝑏

𝑡 ≤ 0 then Π𝐺
𝜏 − Π𝑏

𝑡 ≤ 𝐷𝐺
𝑡 −𝐷𝑏

𝑡 ≤ 0.

Proof. For each agent 𝑖 in the pool at 𝜏 , let 𝑋𝑏
𝑖 and 𝑋𝐺

𝑖 be the random variable indicating

that 𝑖 departs at 𝜏 under the 𝑏-batching and greedy policies. Clearly, 𝑋𝑏
𝑖 is a Bernoulli

random variable with mean 𝑏𝑞𝐻 .

Suppose that Π𝐺
𝜏 ≤ Π𝑏

𝑡 . For each agent 𝑖 in the batching pool, that is not in the greedy

pool, we assume that 𝑋𝐺
𝑖 = 0, which allows us to couple all the variables 𝑋𝑏

𝑖 and 𝑋𝐺
𝑖 such

that their joint realizations satisfy 𝑋𝑏
𝑖 ≥ 𝑋𝐺

𝑖 . This yields the result:

𝐷𝐺
𝑡 =

Π𝐺
𝜏∑︁

𝑖=0

𝑋𝐺
𝑖 =

Π𝑏
𝜏∑︁

𝑖=0

𝑋𝐺
𝑖 ≤

Π𝑏
𝜏∑︁

𝑖=0

𝑋𝑏
𝑖 = 𝐷𝑡

The proof in the case Π𝐺
𝜏 ≥ Π𝑏

𝑡 follows from the same argument.

Claim 14. At any batch step 𝑡 and for both 2-way and 2, 3-way matching , we have Π𝐺
𝜏 ≥

Π𝑏
𝑡 − 2𝑏

Proof. As a reminder, let Δ𝜏 = Π𝑏
𝜏 − Π𝐺

𝜏 . We first prove that Δ𝑡 ≥ 0⇒ Δ𝑡+1 ≤ Δ𝑡. Recall

that:

Δ𝑡+1 −Δ𝜏 = 𝐴𝜏 − 𝐴𝜏 −𝐷𝑏
𝜏 +𝐷𝐺

𝜏 − 𝜇𝑏
2(𝜏) + 𝜇𝐺

2 (𝜏). (A.18)

We now couple arrivals such that for all 𝑡, 𝐴𝜏 = 𝐴𝜏 . Using the assumption Δ𝑡 ≥ 0, and

Claim 13, we get 𝐷𝑏
𝜏 −𝐷𝐺

𝜏 ≥ 0.

We now couple the compatibility realizations between the arriving nodes and the H nodes

present in the pool. Because there are more nodes in the batching pool (even after accounting

230



for departures, cf Claim 13), for each match that is conducted in the greedy pool, we can

associate the corresponding match in the batching pool. Therefore the matches conducted

by greedy are a feasible solution for the batching optimization, and 𝜇𝑏
2(𝜏) ≥ 𝜇𝐺

2 (𝜏). This

concludes that Δ𝑡 ≥ 0⇒ Δ𝑡+1 ≤ Δ𝑡.

Suppose now that Δ𝑡 ≤ 0. Then from Claim 13, Δ𝑡−𝐷𝑏
𝜏 +𝐷𝐺

𝜏 ≤ 0, and using Equation

A.18, we get Δ𝑡+1 ≤ 𝜇𝐺
2 (𝜏) ≤ 2𝑏, where the last inequality comes from the fact that each

incoming node can never match more than two other nodes. This concludes that for all 𝑡,

Δ𝑡 ≤ 2𝑏.

Lemma 10. For both 2-way and 2, 3-way matching

1. At any batch step 𝜏 > 0, we have E
[︀
Π𝐺

𝜏

]︀
≤ 𝜌/𝑞𝐻 and E

[︀
Π𝑏

𝜏

]︀
≤ 𝜌/𝑞𝐻 .

2. At any batch step 𝜏 > log 0.5
log(1−𝑏𝑞𝐻)

, for a small constant 𝜖, we have:

P
[︀
Π𝐺

𝜏 ≥ (1 + 𝜖)𝜌/𝑞𝐻
]︀
≤ 𝑒

− 0.5𝜖2𝜌
3𝑞𝐻 .

The same holds for Π𝑏
𝜏

Proof. We compute the pool size of a “hypothetical process” where nodes do not leave the

pool after getting matched, i.e., they only leave according to the probabilistic departure

process. This gives us an upper-bound on the pool size of the actual system. Let 𝑋𝑡,𝜏

be the indicator that node arriving at time 𝑡 < 𝜏𝑏 is still in the pool at the beginning

of the 𝜏 -th batch in the “hypothetical process”. For 1 ≤ 𝑡 ≤ 𝜏𝑏, the random variables

𝑋𝑡,𝜏 are independent Bernoulli with success probability of 𝜌(1 − 𝑏𝑞𝐻)⌊
𝜏𝑏−𝑡

𝑏 ⌋. Thus we have

Π𝑏
𝜏 ≤

∑︀𝜏𝑏
𝑡=1𝑋𝑡,𝜏 . Taking expectation we get:

E
[︀
Π𝐺

𝜏

]︀
≤

𝜏𝑏∑︁
𝑡=1

E [𝑋𝑡,𝜏 ] ≤
𝜏𝑏∑︁
𝑡=1

[︁
𝜌(1− 𝑏𝑞𝐻)⌊

𝜏𝑏−𝑡
𝑏 ⌋
]︁

≤
∞∑︁
𝑗=0

[︀
𝜌𝑏(1− 𝑏𝑞𝐻)𝑗

]︀
≤ 𝜌/𝑞𝐻 .
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Further using a concentration result due to [10] for independent Bernoulli variables, we

have:

P
[︀
Π𝐺

𝜏 ≥ (1 + 𝜖)𝜌/𝑞𝐻
]︀
≤ P

[︃
𝜏𝑏∑︁
𝑡=1

𝑋𝑡,𝜏 ≥ (1 + 𝜖)𝜌/𝑞𝐻

]︃

≤ P

[︃
𝜏𝑏∑︁
𝑡=1

𝑋𝑡,𝜏 ≥ (1 + 𝜖)
𝜏𝑏∑︁
𝑡=1

E [𝑋𝑡,𝜏 ]

]︃
≤ 𝑒−

𝜖2
∑︀𝜏𝑏

𝑡=1 E[𝑋𝑡,𝜏 ]
3 ≤ 𝑒

− 0.5𝜖2𝜌
3𝑞𝐻 ,

where the last inequality follows from
∑︀𝜏𝑏

𝑡=1 E [𝑋𝑡,𝜏 ] ≥ 0.5𝜌/𝑞𝐻 for 𝑡 > log 0.5
𝑏 log(1−𝑞𝐻)

.

Lemma 11. For any batch step 𝑡 ≥ log 0.5

log [(1−𝑏𝑞𝐻)(1−𝑝𝐻)𝑏(1−𝜌)]
, and for both 𝑘 = 2 and 𝑘 = 3, we

have E
[︀
Π𝑏

𝑡

]︀
≥ 𝑙𝜌

𝑞𝐻
where 𝑙 = 0.5(1−(1−𝜌)𝑝𝐻𝑏)

1+(1−𝜌)/𝛼
.

Proof. We prove this lower bound by counting the number of 𝐻 nodes with degree zero

during their time in the pool. Consider node 𝑣 joining the pool during the 𝜏 ′-th batch

where 𝜏 ′ < 𝜏 . If 𝑁𝐿,𝜏 ′ nodes arrive during the 𝜏 ′-th batching, then node 𝑣 has (1− 𝑝𝐻)𝑁𝐿,𝜏 ′

probability of not receiving an edge from 𝐸 nodes. Now consider any 𝜏 ′ < 𝑗 ≤ 𝜏 , with

probability at least (1− 𝑏𝑞𝐻)𝑗−𝜏 ′(1− 𝑝𝐻)𝑁𝐿,𝜏 ′+𝑁𝐿,𝜏 ′+1+...+𝑁𝐿,𝑗 node 𝑣 will still be in the pool

without forming any incoming edge. Let 𝑍 be the set of nodes from the 𝜏 ′-th batch still in

pool at end of the 𝜏 -th batch which had no chance of matching. We have:

P [𝑣 ∈ 𝑍|𝑣 is 𝐻, 𝑁𝐿,𝜏 , 𝑁𝐿,𝜏 ′+1, . . . , 𝑁𝐿,𝜏 ]

≥ (1− 𝑏𝑞𝐻)𝜏−𝜏 ′(1− 𝑝𝐻)𝑁𝐿,𝜏 ′+𝑁𝐿,𝜏 ′+1+...+𝑁𝐿,𝜏

Summing over all the 𝐻 nodes in the 𝜏 ′-th batch, and taking expectation with respect to

𝑁𝐿,𝜏 ′ , 𝑁𝐿,𝜏 ′+1, . . . 𝑁𝐿,𝜏 we get:
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E [|𝑍|] ≥ (1− 𝑏𝑞𝐻)𝜏−𝜏 ′E
[︀
(𝑍 −𝑁𝐿,𝜏 ′)(1− 𝑝𝐻)𝑁𝐿,𝜏 ′+𝑁𝐿,𝜏 ′+1+...+𝑁𝐿,𝜏

]︀
≥ (1− 𝑏𝑞𝐻)𝜏−𝜏 ′E

[︀
(𝑍 −𝑁𝐿,𝜏 ′)(1− 𝑝𝐻)𝑁𝐿,𝜏 ′

]︀
E
[︀
(1− 𝑝𝐻)𝑁𝐿,𝜏 ′+1

]︀
. . .E

[︀
(1− 𝑝𝐻)𝑁𝐿,𝜏

]︀
≥ (1− 𝑏𝑞𝐻)𝜏−𝜏 ′E [(𝑍 −𝑁𝐿,𝜏 ′)(1− 𝑝𝐻𝑁𝐿,𝜏 ′)]E

[︀
(1− 𝑝𝐻)𝑁𝐿,𝜏 ′+1

]︀
. . .E

[︀
(1− 𝑝𝐻)𝑁𝐿,𝜏

]︀
≥ (1− 𝑏𝑞𝐻)𝜏−𝜏 ′𝜌𝑏(1− (1− 𝜌)𝑝𝐻𝑏)(1− 𝑝𝐻)(1−𝜌)𝑏(𝑡−𝜏 ′−1)

where the inequality in the forth line is by Claim 9 and the the one in the last line is by

Jensens’s equality. Summing over all such 𝑣 nodes in batches 𝜏 ′ < 𝜏 gives us a lower bound

on the on pool size at the end of the 𝜏 -th batch.

E
[︀
Π𝑏

𝜏

]︀
≥ 𝜌𝑏(1− (1− 𝜌)𝑝𝐻𝑏)

𝜏∑︁
𝜏 ′=1

[︀
(1− 𝑏𝑞𝐻)(1− 𝑝𝐻)𝑏(1−𝜌)

]︀𝜏−𝜏 ′

= 𝜌𝑏(1− (1− 𝜌)𝑝𝐻𝑏)
1−

[︀
(1− 𝑏𝑞𝐻)(1− 𝑝𝐻)𝑏(1−𝜌)

]︀𝜏
1− [(1− 𝑏𝑞𝐻)(1− 𝑝𝐻)𝑏(1−𝜌)]

≥ 0.5𝜌𝑏(1− (1− 𝜌)𝑝𝐻𝑏)
1− [(1− 𝑏𝑞𝐻)(1− 𝑝𝐻)𝑏(1−𝜌)]

≥ 0.5𝜌𝑏(1− (1− 𝜌)𝑝𝐻𝑏)
𝑏𝑞𝐻(1 + (1− 𝜌)/𝛼)

=
𝜌

𝑞𝐻

0.5(1− (1− 𝜌)𝑝𝐻𝑏)
1 + (1− 𝜌)/𝛼

where inequality in the third line follows from the assumption that 𝜏 ≥ log 0.5

log [(1−𝑏𝑞𝐻)(1−𝑝𝐻)𝑏(1−𝜌)]
,

and the one in the forth line follows from
[︀
(1− 𝑏𝑞𝐻)(1− 𝑝𝐻)𝑏(1−𝜌)

]︀
≥ 1− 𝑏𝑞𝐻(1+(1−𝜌)/𝛼).

Lemma 12. For any batch step 𝜏 ≥ log 0.5
𝑏 log [(1−𝑞𝐻)(𝜌+(1−𝜌)(1−𝑝𝐻))]

and for both 𝑘 = 2 and 𝑘 = 3,

1. E
[︀
Π𝐺

𝜏

]︀
≥ ̃︀𝑙𝜌

𝑞𝐻
, where ̃︀𝑙 = 0.5(1−𝑝𝐻𝑝𝐸)

1+(1−𝜌)/𝛼
.

2. For a small constant 𝜖, we have: P
[︁
Π𝐺

𝜏 ≤ (1− 𝜖)̃︀𝑙𝜌/𝑞𝐻]︁ ≤ 𝑒
− 0.5𝜌(1−𝑝𝐻𝑝𝐸)𝜖2

2𝑞𝐻 [1+(1−𝜌)/𝛼] .

233



Proof. We prove this lower bound by counting the number of 𝐻 nodes with degree zero

during their time in the pool. Consider node 𝑣 joining the pool at time 𝑡 < 𝜏𝑏. Assume

at each time there is exactly one 𝐸 node waiting to be matched. 4 Node 𝑣 can form a

2-way with the waiting 𝐸 node independently with probability 𝑝𝐻𝑝𝐸. If this event does not

happen, then the event that node 𝑣 does not leave then pool by time 𝜏𝑏 and also does not

form any incoming edge with an arriving node between time 𝑡 and 𝜏𝑏 is independent of all

the other events and it has probability (1 − 𝑏𝑞𝐻)⌊
𝜏𝑏−𝑡

𝑏 ⌋ (𝜌+ (1− 𝜌)(1− 𝑝𝐻))𝜏𝑏−𝑡. Let 𝑋𝑡,𝜏𝑏

be the indicator that the first event does not happen for node 𝑣, but the second one does.

It follows by definition that Π𝐺
𝜏 ≥

∑︀𝜏𝑏
𝑡=1𝑋𝑡,𝜏𝑏. Taking expectation form both sides we get:

E
[︀
Π𝐺

𝜏

]︀
≥

𝜏𝑏∑︁
𝑡=1

E [𝑋𝑡,𝜏𝑏] = 𝜌 (1− 𝑝𝐻𝑝𝐸)
𝜏𝑏∑︁
𝑡=1

(1− 𝑏𝑞𝐻)⌊
𝜏𝑏−𝑡

𝑏 ⌋ (𝜌+ (1− 𝜌)(1− 𝑝𝐻))𝜏𝑏−𝑡

≥ 𝜌 (1− 𝑝𝐻𝑝𝐸)
𝜏𝑏∑︁
𝑡=1

[(1− 𝑞𝐻) (𝜌+ (1− 𝜌)(1− 𝑝𝐻))]𝜏𝑏−𝑡

= 𝜌 (1− 𝑝𝐻𝑝𝐸)
1− [(1− 𝑞𝐻) (𝜌+ (1− 𝜌)(1− 𝑝𝐻))]𝜏𝑏

1− [(1− 𝑞𝐻) (𝜌+ (1− 𝜌)(1− 𝑝𝐻))]

≥ 0.5𝜌 (1− 𝑝𝐻𝑝𝐸)
𝑞𝐻 [1 + (1− 𝜌)/𝛼]

,

where the inequality in the second line holds because (1 − 𝑏𝑞𝐻)
⌊ 𝜏𝑏−𝑡

𝑏 ⌋ ≥ (1 − 𝑏𝑞𝐻)
𝜏𝑏−𝑡

𝑏

and by Claim 9 (1− 𝑏𝑞𝐻)
𝜏𝑏−𝑡

𝑏 ≥ (1− 𝑞𝐻)𝜏𝑏−𝑡. Further using a concentration for independent

Bernoulli variables [10], we have:

P
[︁
Π𝐺

𝜏 ≤ (1− 𝜖)̃︀𝑙𝜌/𝑞𝐻]︁ ≤ P

[︃
𝜏𝑏∑︁
𝑡=1

𝑋𝑡,𝜏 ≤ (1− 𝜖)̃︀𝑙𝜌/𝑞𝐻]︃

≤ P

[︃
𝜏𝑏∑︁
𝑡=1

𝑋𝑡,𝜏 ≥ (1− 𝜖)
𝜏𝑏∑︁
𝑡=1

E [𝑋𝑡,𝜏 ]

]︃

≤ 𝑒−
𝜖2

∑︀𝜏𝑏
𝑡=1 E[𝑋𝑡,𝜏 ]

2 ≤ 𝑒
− 0.5𝜌(1−𝑝𝐻𝑝𝐸)𝜖2

2𝑞𝐻 [1+(1−𝜌)/𝛼] ,

4In fact, there is at most one 𝐸 node waiting, but this can only decrease the pool size.
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Appendix B

Appendices for Chap 5

B.1 Proof of Lemma 2

Proof of Lemma 2. Let 𝜋(𝑥, 𝑦) be the state joint distribution of [𝑋, 𝑌 ], and let 𝜋𝑋(𝑥) =∑︀
𝑦≥0 𝜋(𝑥, 𝑦) be the marginal distribution of 𝑋. For a given 𝑥 ≥ 0, we have:

∑︁
𝑦∈𝑆(𝑥)

𝜋(𝑥, 𝑦)𝑄([𝑥, 𝑦], [𝑥+ 1, 𝑦]) +
∑︁

𝑦 ̸∈𝑆(𝑥)

𝜋(𝑥, 𝑦)𝑄([𝑥, 𝑦], [𝑥+ 1, 𝑦])

=
∑︁

𝑦∈𝑆(𝑥+1)

𝜋(𝑥+ 1, 𝑦)𝑄([𝑥+ 1, 𝑦], [𝑥, 𝑦]) +
∑︁

𝑦 ̸∈𝑆(𝑥+1)

𝜋(𝑥+ 1, 𝑦)𝑄([𝑥+ 1, 𝑦], [𝑥, 𝑦]).

Using Condition 2, we upper-bound the LHS and lower-bound the RHS, which results in

having:

𝑓(𝑥)P[𝑋 = 𝑥, 𝑌 ∈ 𝑆(𝑥)] + P[𝑋 = 𝑥, 𝑌 ̸∈ 𝑆(𝑥)] ≥ 𝑔(𝑥+ 1)P[𝑋 = 𝑥+ 1, 𝑌 ∈ 𝑆(𝑥+ 1)].

Let 𝜋𝑆(𝑥) = P[𝑋 = 𝑥, 𝑌 ∈ 𝑆(𝑥)] =
∑︀

𝑦∈𝑆(𝑥) 𝜋(𝑥, 𝑦). Observe that 𝜋𝑋(𝑥) ≤ 𝜋𝑆(𝑥) + 𝑐𝛿𝑥 ≤

𝜋𝑆(𝑥) + 𝑐𝜌𝑥 from Condition 1 and for any 𝜌 ∈ [𝛿, 1). Assuming that for 𝑥 ≥ 𝜂, 𝑓(𝑥)
𝑔(𝑥+1)

≤ 𝜌 ,

we get:

𝜋𝑆(𝑥+ 1) ≤ 𝑓(𝑥)

𝑔(𝑥+ 1)
𝜋𝑆(𝑥) +

P[𝑌 ̸∈ 𝑆(𝑥)]
𝑔(𝑥+ 1)

≤ 𝜌𝜋𝑆(𝑥) +
𝑐𝛿𝑥

𝑔(𝑥+ 1)
≤ 𝜌𝜋𝑆(𝑥) +

𝑐𝜌𝑥

𝑔(𝜂 + 1)
,
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where the last inequality results from the assumption 𝛿𝑥

𝑔(𝑥+1)
≤ 𝜌𝑥

𝑔(𝜂+1)
. We can now prove by

induction that:

𝜋𝑆(𝜂 + 𝑖) ≤ 𝜌𝑖
(︂
𝜋𝑆(𝜂) + 𝑖

𝑐𝜌𝜂−1

𝑔(𝜂 + 1)

)︂
This allows us to conclude:

P[𝑋 ≥ 𝜂 + 𝑘] =
∞∑︁

𝑖=𝜂+𝑘

𝜋𝑋(𝑖)

≤
∞∑︁
𝑖=𝑘

𝜋𝑆(𝜂 + 𝑖) +
∞∑︁
𝑖=𝑘

𝑐𝜌𝜂+𝑖

≤
∞∑︁
𝑖=𝑘

𝜌𝑖𝜋𝑆(𝜂) +
𝑐𝜌𝜂−1

𝑔(𝜂 + 1)

∞∑︁
𝑖=𝑘

𝑖𝜌𝑖 +
∞∑︁
𝑖=𝑘

𝑐𝜌𝜂+𝑖

≤ 𝜌𝑘

1− 𝜌

(︂
1 + 𝑐𝜌𝜂 +

𝑐𝜌𝜂−1

𝑔(𝜂 + 1)

𝑘 + 1

1− 𝜌

)︂
≤ 𝜌𝑘

1− 𝜌

(︂
1 + 𝑐+

𝑐(𝑘 + 1)

𝑔(𝜂 + 1)− 𝑓(𝜂)

)︂

B.2 Missing proofs for BilateralMatch(H)

In the proofs of this section and of the next ones we will use the following facts: for any

bounded, non-negative function 𝜉 : R+ ↦→ R+ and any constant 𝑢 > 0, in the limit where

𝑝𝐻 → 0,

Fact 1. For 𝜂 = (ln𝑢)+𝜉(𝑝𝐻)

𝑝2𝐻
, we have (1− 𝑝2𝐻)𝜂 = 𝑒−𝜉(𝑝𝐻 )

𝑢
+𝑂(𝑝2𝐻).

Fact 2. For any constants 𝑝𝐸, 𝑟 > 0 and for 𝜂 = (ln𝑢)+𝜉(𝑝)

𝑝2𝐻
, we have (1− 𝑝𝐸𝑝𝐻)𝜂 = 𝑜(𝑝𝑟𝐻).

Fact 3. For any constant 𝑝𝐸, and for 𝜂 = (ln𝑢)+𝜉(𝑝𝐻)
𝑝𝐸𝑝𝐻

, we have (1− 𝑝2𝐻)𝜂 = 1−𝑂(𝑝𝐻).

Fact 4. For any constant 𝑝𝐸 and for 𝜂 = (ln𝑢)+𝜉(𝑝)
𝑝𝐸𝑝𝐻

, we have (1− 𝑝𝐸𝑝𝐻)𝜂 = 𝑒−𝜉(𝑝)

𝑢
+𝑂(𝑝𝐻).
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B.2.1 Proof of Theorem 3

Proof of Theorem 3. We first upper-bound E[𝐻ℬ𝐻 ]. Let

𝑣(𝜆𝐻 , 𝜆𝐸, 𝑝𝐸, 𝑝𝐻) =

{︃
1

𝑝𝐸𝑝𝐻

(︁
ln
(︁

𝜆𝐸

𝜆𝐸−𝜆𝐻

)︁
+ 𝑐3
√
𝑝𝐻

)︁
+ 𝑝

−3/4
𝐻 when 𝜆𝐻 < 𝜆𝐸,

1
𝑝2𝐻

(︁
ln
(︁

2𝜆𝐻

𝜆𝐸+𝜆𝐻

)︁
+ 𝑐4
√
𝑝𝐻

)︁
+ 𝑝

−3/4
𝐻 when 𝜆𝐻 > 𝜆𝐸.

Where 𝑐3 and 𝑐4 are the constants from Proposition 5. Using the equality E[𝐻ℬ𝐻 ] =∑︀∞
𝑖=1 P[𝐻ℬ𝐻 ≥ 𝑖], we have:

E[𝐻ℬ𝐻 ] =

𝑣(𝜆𝐻 ,𝜆𝐸 ,𝑝𝐸 ,𝑝𝐻)−1∑︁
𝑖=1

P[𝐻ℬ𝐻 ≥ 𝑖] +
∞∑︁

𝑖=𝑣(𝜆𝐻 ,𝜆𝐸 ,𝑝𝐸 ,𝑝𝐻)

P[𝐻ℬ𝐻 ≥ 𝑖]

≤ 𝑣(𝜆𝐻 , 𝜆𝐸, 𝑝𝐸, 𝑝𝐻) +
∞∑︁

𝑗=𝑝
−3/4
𝐻

𝛾(𝑝𝐻)
𝑗

1− 𝛾(𝑝𝐻)

≤ 𝑣(𝜆𝐻 , 𝜆𝐸, 𝑝𝐸, 𝑝𝐻) +
𝛾′′(𝑝𝐻)

𝑝
−3/4
𝐻

(1− 𝛾′′(𝑝𝐻))2
.

Where we denote 𝛾′′ = max(𝛾, 𝛾′) and we used the result from Proposition 5 : P[𝐻ℬ𝐻 ≥

𝑣(𝜆𝐻 , 𝜆𝐸, 𝑝𝐸, 𝑝𝐻) + 𝑗] ≤ 𝛾′′(𝑝𝐻)𝑗

1−𝛾′′(𝑝𝐻)
.

Applying the fact that 𝛾′′(𝑝𝐻)𝑝
−3/4
𝐻 =

(︀
1−√𝑝𝐻 + 𝑜(

√
𝑝𝐻)
)︀𝑝−3/4

𝐻 = 𝑜(𝑝2𝐻), and some alge-

bra we get the following upper-bound on E[𝐻ℬ𝐻 ]:

- If 𝜆𝐻 < 𝜆𝐸, then E[𝐻ℬ𝐻 ] ≤
ln
(︁

𝜆𝐸
𝜆𝐸−𝜆𝐻

)︁
𝑝𝐸𝑝𝐻

+ 𝑜
(︁

1
𝑝𝐻

)︁
.

- If 𝜆𝐻 > 𝜆𝐸, then E[𝐻ℬ𝐻 ] ≤
ln
(︁

2𝜆𝐻
𝜆𝐻+𝜆𝐸

)︁
𝑝2𝐻

+ 𝑜
(︁

1
𝑝2𝐻

)︁
.

Now we proceed to lower-bound E[𝐻ℬ𝐻 ]: Applying Markov inequality to E[𝐻ℬ𝐻 ] and using

Proposition 4, we get the following lower-bound on E[𝐻ℬ𝐻 ]:

- If 𝜆𝐻 < 𝜆𝐸, then E[𝐻ℬ𝐻 ] ≥
ln
(︁

𝜆𝐸
𝜆𝐸−𝜆𝐻

)︁
𝑝𝐸𝑝𝐻

+ 𝑜
(︁

1
𝑝𝐻

)︁
.

- If 𝜆𝐻 > 𝜆𝐸, then E[𝐻ℬ𝐻 ] ≥
ln
(︁

2𝜆𝐻
𝜆𝐻+𝜆𝐸

)︁
𝑝2𝐻

+ 𝑜
(︁

1
𝑝2𝐻

)︁
.

This completes the proof.
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B.2.2 Proof of Corollaries 1 and 2

Proof of Corollary 1. Define 𝑥 = 𝜆𝐻/𝜆𝐸, and 𝑓(𝑥) =
ln( 1

1−𝑥)
𝑥

. Note that the constant
ln
(︁

𝜆𝐸
𝜆𝐸−𝜆𝐻

)︁
𝑝𝐸𝜆𝐻

= 𝑓(𝑥)
𝜆𝐸𝑝𝐸

. It is easy check that 𝑓 ′(𝑥) > 0 in 𝑥 ∈ (0, 1), and therefore 𝑓(𝑥) is

increasing in 𝑥 ∈ (0, 1).

Proof of Corollary 2. Define 𝑦 = 𝜆𝐻/𝜆𝐸, and 𝑔(𝑦) =
ln( 2𝑦

1+𝑦 )
𝑦

. Note that the constant
ln
(︁

2𝜆𝐻
𝜆𝐻+𝜆𝐸

)︁
𝜆𝐻

= 𝑔(𝑦)
𝜆𝐸

. It is easy to check that 𝑔′(𝑦) > 0 when 𝑦 ∈ (1, 𝑦*), and 𝑔′(𝑦) < 0 in

𝑦 > 𝑦* where 𝑦* is the solution of 𝑔′(𝑦) = 0:

𝑔′(𝑦*) = 0⇔ 1

𝑦* + 1
= ln

(︂
2𝑦*

1 + 𝑦*

)︂
⇔ (𝑦* + 1) ln(2− 2/(𝑦* + 1)) = 1,

B.2.3 Proof of Proposition 5

Instead of proving Proposition 5, we prove a stronger result. This will be useful later on to

prove an upper bound for 𝐸 agents (see Lemma 13 in B.2.4).

Proposition 18. propUpperHprioH Under ℬ𝐻 , if 𝜆𝐻 < 𝜆𝐸, for any non-negative bounded

function 𝜉(𝑝𝐻), for all 𝑘 ≥ 0:

P
[︂
𝐻ℬ𝐻 ≥ 1

𝑝𝐸𝑝𝐻

(︂
ln

(︂
𝜆𝐸

𝜆𝐸 − 𝜆𝐻

)︂
+ 𝜉(𝑝𝐻)

)︂
+ 𝑘

]︂
≤ 𝛾(𝑝𝐻)

𝑘

1− 𝛾(𝑝𝐻)
,

where 𝛾(𝑝𝐻) = 𝜆𝐻

𝜆𝐸−(𝜆𝐸−𝜆𝐻)𝑒−𝜉(𝑝𝐻 ) +𝑂(𝑝𝐻).

If 𝜆𝐻 > 𝜆𝐸, for any non-negative bounded function 𝜉′(𝑝𝐻), for all 𝑘 ≥ 0:

P
[︂
𝐻ℬ𝐻 ≥ 1

𝑝2𝐻

(︂
ln

(︂
2𝜆𝐻

𝜆𝐸 + 𝜆𝐻

)︂
+ 𝜉′(𝑝𝐻)

)︂
+ 𝑘

]︂
≤ 𝛾′(𝑝𝐻)

𝑘

1− 𝛾′(𝑝𝐻)
,

where 𝛾′(𝑝𝐻) = 𝑒−𝜉′(𝑝𝐻 )

2−𝑒−𝜉′(𝑝𝐻 ) +𝑂(𝑝2𝐻).

Proof. We wish to apply Lemma 2 with [𝑋(𝑡), 𝑌 (𝑡)] = [𝐻ℬ𝐻 (𝑡), 𝐸ℬ𝐻 (𝑡)], in the special case
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where 𝑆(ℎ) = N for all ℎ, and 𝑐 = 𝛿 = 0. This implies that we need to find functions 𝑓(·) and

𝑔(·) such that for all 𝑒 ∈ N, 𝑓(ℎ) ≥ 𝑄ℬ𝐻 ([ℎ, 𝑒], [ℎ+ 1, 𝑒]), and 𝑔(ℎ) ≤ 𝑄ℬ𝐻 ([ℎ, 𝑒], [ℎ− 1, 𝑒]).

Let 𝑓(ℎ) = 𝜆𝐻(1− 𝑝2𝐻)ℎ and 𝑔(ℎ) = 𝜆𝐻(1− (1− 𝑝2𝐻)ℎ) + 𝜆𝐸(1− (1− 𝑝𝐸𝑝𝐻)ℎ). We have

𝑓(ℎ)

𝑔(ℎ+ 1)
=

𝜆𝐻(1− 𝑝2𝐻)ℎ

𝜆𝐻(1− (1− 𝑝2𝐻)ℎ+1) + 𝜆𝐸(1− (1− 𝑝𝐸𝑝𝐻)ℎ+1)
.

Case 𝜆𝐻 < 𝜆𝐸: Take 𝜂 = 1
𝑝𝐸𝑝𝐻

(︁
ln
(︁

𝜆𝐸

𝜆𝐸−𝜆𝐻

)︁
+ 𝜉(𝑝𝐻)

)︁
. Facts 3 and 4 imply respectively

that (1 − 𝑝2𝐻)𝜂 = 1 + 𝑂(𝑝𝐻) and (1 − 𝑝𝐸𝑝𝐻)𝜂 = 𝜆𝐸−𝜆𝐻

𝜆𝐸
𝑒−𝜉(𝑝𝐻) + 𝑂(𝑝𝐻). This yields for all

ℎ ≥ 𝜂:
𝑓(ℎ)

𝑔(ℎ+ 1)
≤ 𝜆𝐻
𝜆𝐸 − (𝜆𝐸 − 𝜆𝐻)𝑒−𝜉(𝑝𝐻)

+𝑂(𝑝𝐻) := 𝛾(𝑝𝐻).

Case 𝜆𝐻 > 𝜆𝐸: Taking 𝜂 = 1
𝑝2𝐻

(︁
ln
(︁

2𝜆𝐻

𝜆𝐸+𝜆𝐻

)︁
+ 𝜉′(𝑝𝐻)

)︁
. Facts 1 and 2 imply respectively

(1− 𝑝2𝐻)𝜂 = 𝜆𝐸+𝜆𝐻

2𝜆𝐻
𝑒−𝜉′(𝑝𝐻) +𝑂(𝑝2𝐻) and (1− 𝑝𝐸𝑝𝐻)𝜂 = 𝑜(𝑝2𝐻). This yields for all ℎ ≥ 𝜂:

𝑓(ℎ)

𝑔(ℎ+ 1)
≤

1
2
𝑒−𝜉′(𝑝𝐻)

1− 1
2
𝑒−𝜉′(𝑝𝐻)

+𝑂(𝑝2𝐻) := 𝛾′(𝑝𝐻).

In both cases, we conclude by applying Lemma 2 with 𝜌 = 𝛾(𝑝𝐻) or 𝜌 = 𝛾′(𝑝𝐻) .

Proof of Proposition 5. The proof of Proposition 5 is a consequence of Proposition 18:

- In the case where 𝜆𝐻 < 𝜆𝐸, take 𝜉(𝑝𝐻) =
√
𝑝𝐻

𝜆𝐻

𝜆𝐸−𝜆𝐻
. This implies that 𝛾(𝑝𝐻) =

𝜆𝐻

𝜆𝐸−(𝜆𝐸−𝜆𝐻)𝑒−𝜉(𝑝𝐻 ) +𝑂(𝑝𝐻) = 1−√𝑝𝐻 +𝑂(
√
𝑝𝐻).

- In the case where 𝜆𝐻 > 𝜆𝐸, take 𝜉′(𝑝𝐻) = 2
√
𝑝𝐻 . This implies that 𝛾′(𝑝𝐻) =

𝑒−𝜉′(𝑝𝐻 )

2−𝑒−𝜉′(𝑝𝐻 ) +𝑂(𝑝2𝐻) = 1−√𝑝𝐻 +𝑂(
√
𝑝𝐻).

B.2.4 Proof of Proposition 4

The proof of Proposition 4 requires a concentration bound on the number of 𝐸 agents, which

we state in Lemma 13.

241



Lemma 13. Under ℬ𝐻 , and assuming 𝑝𝐻 ≤ 𝑝𝐸, there exist constants 𝐶 and 𝜁 < 1 (which

only depend on 𝜆𝐻 , 𝜆𝐸, and 𝑝𝐸) such that for any 𝑘 ≥ 0, there exists 𝑝 such that for any

𝑝𝐻 < 𝑝, we have:

P
[︂
𝐸ℬ𝐻 ≥ 1

√
𝑝𝐻

+ 𝑘

]︂
≤ 𝐶𝜁𝑘.

Proof. The proof is based on a bound on the right-tail distribution of 𝐸 agents in the market.

To do this, we will apply Lemma 2 with [𝑋(𝑡), 𝑌 (𝑡)] = [𝐸ℬ𝐻 (𝑡), 𝐻ℬ𝐻 (𝑡)]. Therefore, we find

an upper-bound 𝑓(𝑒) = 𝜆𝐸(1− 𝑝2𝐸)𝑒 ≥ 𝑄ℬ𝐻 ([ℎ, 𝑒], [ℎ, 𝑒+1]) on the upward transition (5.3c).

Similarly, we would like to find a lower-bound 𝑔(𝑒) on the downward transition (5.3d), but

we cannot find one for any ℎ ∈ N. Therefore we need to restrict our attention to some

subset 𝑆(𝑒) ⊂ N. Recall that 𝑄ℬ𝐻 ([ℎ, 𝑒], [ℎ, 𝑒− 1]) = 𝜆𝐻(1− 𝑝2𝐻)ℎ(1− (1− 𝑝𝐸𝑝𝐻)𝑒)+𝜆𝐸(1−

𝑝𝐸𝑝𝐻)
ℎ(1− (1− 𝑝2𝐸)𝑒)).

Case 𝜆𝐻 < 𝜆𝐸:

𝑆(𝑒) =

{︂
ℎ ∈ N | ℎ ≤ 1

𝑝𝐸𝑝𝐻

(︂
ln

(︂
𝜆𝐸

𝜆𝐸 − 𝜆𝐻

)︂
+ ln 2

)︂
+ 𝑒

}︂
.

Applying Proposition 18 with 𝜉(𝑝𝐻) = ln 2, we get that P[𝐻ℬ𝐻 ̸∈ 𝑆(𝑒)] ≤ 𝛾(𝑝𝐻)𝑒

1−𝛾(𝑝𝐻)
= 𝑐𝛿𝑒,

where 𝑐 = 𝜆𝐻+𝜆𝐸

𝜆𝐸−𝜆𝐻
, 𝛿 = 2𝜆𝐻

𝜆𝐸+𝜆𝐻
. Fact 4 implies that for all ℎ ∈ 𝑆(𝑒), (1− 𝑝𝐸𝑝𝐻)ℎ ≥ 𝜆𝐸−𝜆𝐻

2𝜆𝐸
(1−

𝑝𝐸𝑝𝐻)
𝑒 + 𝑂(𝑝𝐻). Keeping only the second term in 𝑄ℬ𝐻 ([ℎ, 𝑒], [ℎ, 𝑒 − 1]), we get the lower-

bound:

𝑄ℬ𝐻 ([ℎ, 𝑒], [ℎ, 𝑒− 1]) ≥ 𝜆𝐸 − 𝜆𝐻
2

(1− 𝑝𝐸𝑝𝐻)𝑒(1− (1− 𝑝2𝐸)𝑒) +𝑂(𝑝𝐻) := 𝑔(𝑒)

This yields:

𝑓(𝑒)

𝑔(𝑒+ 1)
=

2𝜆𝐸
(𝜆𝐸 − 𝜆𝐻)(1− (1− 𝑝2𝐸)𝑒+1)

(︂
1− 𝑝2𝐸

1− 𝑝𝐸𝑝𝐻

)︂𝑒+1

+𝑂(𝑝𝐻).

We get for all 𝑒 ≥ 1√
𝑝𝐻

, and 𝑝𝐻 small enough, 𝑓(𝑒)
𝑔(𝑒+1)

≤ 𝛿. Furthermore, for 𝜌 = 1+𝛿
2

and 𝑝𝐻
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small enough,

𝛿𝑒

𝑔(𝑒+ 1)
≤ 𝛿𝑒

(1− 𝑝𝐸𝑝𝐻)
1√
𝑝𝐻

−𝑒−1

𝑔( 1√
𝑝𝐻

+ 1)
≤
(︂

𝛿

1− 𝑝𝐸𝑝𝐻

)︂𝑒
1

𝑔( 1√
𝑝𝐻

+ 1)
≤ 𝜌𝑒

𝑔( 1√
𝑝𝐻

+ 1)

We can apply Lemma 2 which yields the desired bound:

P
[︂
𝐸ℬ𝐻 ≥ 1

√
𝑝𝐻

+ 𝑘

]︂
≤ 𝜌𝑘

1− 𝜌

(︃
1 + 𝑐+

𝑐(𝑘 + 1)

𝑔( 1√
𝑝𝐻

+ 1)− 𝑓( 1√
𝑝𝐻

)

)︃

≤ 𝜌𝑘

1− 𝜌

(︂
1 + 𝑐+

𝑐(𝑘 + 1)(𝜆𝐻 + 𝜆𝐸)

2𝜆𝐻𝑔(1/
√
𝑝𝐻 + 1)

)︂
.

≤ 𝜌𝑘

1− 𝜌

(︂
1 + 𝑐+

𝑐(𝑘 + 1)(𝜆𝐻 + 𝜆𝐸)

𝜆𝐻(𝜆𝐸 − 𝜆𝐻)

)︂
.

Where we used first the fact that 𝑓(1/
√
𝑝𝐻)

𝑔(1/
√
𝑝𝐻+1)

≤ 𝛿 = 2𝜆𝐻

𝜆𝐸+𝜆𝐻
and therefore 𝑔(1/√𝑝𝐻 + 1) −

𝑓(1/
√
𝑝𝐻) ≥ 𝜆𝐸−𝜆𝐻

𝜆𝐸+𝜆𝐻
and second the fact that 𝑔(1/√𝑝𝐻 + 1) = 𝜆𝐸−𝜆𝐻

2
+𝑂(𝑝𝐻).

Case 𝜆𝐻 > 𝜆𝐸:

𝑆(𝑒) =

{︂
ℎ ∈ N | ℎ ≤ 1

𝑝2𝐻

(︂
ln

(︂
2𝜆𝐻

𝜆𝐸 + 𝜆𝐻

)︂
+ ln 2

)︂
+ 𝑒

}︂
.

Applying Proposition 18 with 𝜉(𝑝𝐻) = ln(2), we have P[𝐻ℬ𝐸 ̸∈ 𝑆(𝑒)] ≤ 𝛾(𝑝𝐻)𝑒

1−𝛾(𝑝𝐻)
= 𝑐𝛿𝑒, with

𝑐 = 3/2 and 𝛿 = 1/3. Fact 1 implies that for all ℎ ∈ 𝑆(𝑒), (1−𝑝2𝐻)ℎ ≥ 𝜆𝐻+𝜆𝐸

4𝜆𝐻
(1−𝑝2𝐻)𝑒+𝑂(𝑝2𝐻).

Keeping only the first term in 𝑄ℬ𝐻 ([ℎ, 𝑒], [ℎ, 𝑒− 1]), we get the lower-bound:

𝑄ℬ𝐻 ([ℎ, 𝑒], [ℎ, 𝑒− 1]) ≥ 𝜆𝐻 + 𝜆𝐸
4𝜆𝐻

(1− 𝑝2𝐻)𝑒(1− (1− 𝑝𝐸𝑝𝐻)𝑒) +𝑂(𝑝2𝐻) = 𝑔(𝑒).

This yields:

𝑓(𝑒)

𝑔(𝑒+ 1)
≤ 4𝜆𝐻𝜆𝐸

(𝜆𝐻 + 𝜆𝐸)(1− (1− 𝑝𝐸𝑝𝐻)𝑒)

(︂
1− 𝑝2𝐸
1− 𝑝2𝐻

)︂𝑒

+𝑂(𝑝2𝐻).

243



Furthermore, with 𝜌 = 1/2 we get that for 𝑝𝐻 small enough, 𝛿
1−𝑝2𝐻

≤ 𝜌. This leads to

𝛿𝑒

𝑔(𝑒+ 1)
≤ 𝛿𝑒

(1− 𝑝2𝐻)𝑝
−1/2
𝐻 −𝑒

𝑔
(︁
𝑝
−1/2
𝐻 + 1

)︁ ≤ (︂ 𝛿

1− 𝑝2𝐻

)︂𝑒
1

𝑔
(︁
𝑝
−1/2
𝐻 + 1

)︁ ≤ 𝜌𝑒

𝑔
(︁
𝑝
−1/2
𝐻 + 1

)︁ .
Therefore we can apply Lemma 2:

P
[︀
𝐸ℬ𝐻 ≥ 𝑛𝐸 + 𝑘

]︀
≤ 𝜌𝑘

1− 𝜌

⎛⎝1 + 𝑐+
𝑐(𝑘 + 1)

𝑔
(︁
𝑝
−1/2
𝐻 + 1

)︁
− 𝑓(𝑝−1/2

𝐻 )

⎞⎠
≤ 𝜌𝑘

1− 𝜌

(︃
1 + 𝑐+

𝑐(𝑘 + 1)3

2𝑔(𝑝
−1/2
𝐻 )

)︃

≤ 𝜌𝑘

1− 𝜌

(︂
1 + 𝑐+

6𝑐(𝑘 + 1)

𝜆𝐻 + 𝜆𝐸

)︂

Where we used the fact that for all 𝑒 ≥ 1√
𝑝𝐻

, 𝑓(𝑒)
𝑔(𝑒+1)

= 𝑜(𝑝𝐻). Therefore for 𝑝𝐻 small enough,
𝑓(𝑒)

𝑔(𝑒+1)
≤ 1

3
and therefore 𝑔(𝑒+ 1)− 𝑓(𝑒) ≥ 2

3
𝑔(𝑒+ 1). Which concludes the proof.

We can now prove Proposition 4. The main idea is to apply Lemma 1, in two cases

separately, where in one case we have few (≤ 2√
𝑝𝐻

) 𝐸 agents, and in the other case where

we have many. Using Lemma 13, we can exponentially bound the second case.

Proof of Proposition 4. We will apply Lemma 1. Consider 𝑆 =
{︁
𝑒 ∈ R, 𝑒 ≤ 𝑝

−1/2
𝐻 + 𝑝

−1/2
𝐻

}︁
.

Using Lemma 13 with 𝑘 = 𝑝
−1/2
𝐻 , we get that P[𝐸ℬ𝐻 ̸∈ 𝑆] = 𝑜(𝑝4𝐻).

For 𝑒 ∈ 𝑆, we have

(1− 𝑝𝐸𝑝𝐻)𝑒 ≥ 1− 𝑝𝐸𝑝𝐻
(︁
𝑝
−1/2
𝐻 + 𝑝

−1/2
𝐻 + 𝑜(

√
𝑝𝐻)
)︁
= 1− 2𝑝𝐸

√
𝑝𝐻 + 𝑜(

√
𝑝𝐻).

Taking 𝑓(ℎ) = 𝜆𝐻(1− 𝑝2𝐻)ℎ
(︀
1− 2𝑝𝐸

√
𝑝𝐻
)︀
+ 𝑜(
√
𝑝𝐻), we have for 𝑒 ∈ 𝑆, 𝑄ℬ𝐻 ([ℎ, 𝑒], [ℎ+

1, 𝑒]) ≥ 𝑓(ℎ). Let 𝑔(ℎ) = 𝑄ℬ𝐻 ([ℎ, 𝑒], [ℎ− 1, 𝑒]) = 𝜆𝐻(1− (1− 𝑝2𝐻)ℎ) + 𝜆𝐸(1− (1− 𝑝𝐸𝑝𝐻)ℎ),
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and note that 𝑓(ℎ) is non-increasing and 𝑔(ℎ) is non-decreasing. We have:

𝑔(ℎ+ 1)

𝑓(ℎ)
=
𝜆𝐻 + 𝜆𝐸 − 𝜆𝐻(1− 𝑝2𝐻)ℎ+1 − 𝜆𝐸(1− 𝑝𝐸𝑝𝐻)ℎ+1

𝜆𝐻(1− 𝑝2𝐻)ℎ
(︀
1− 2𝑝𝐸

√
𝑝𝐻 + 𝑜(

√
𝑝𝐻)
)︀

In the case 𝜆𝐻 < 𝜆𝐸, Take 𝜂 = 1
𝑝𝐸𝑝𝐻

(︁
ln
(︁

𝜆𝐸

𝜆𝐸−𝜆𝐻

)︁
− 𝑐′1
√
𝑝𝐻

)︁
. Using Facts 3 and 4, we have

(1−𝑝2𝐻)𝜂 = 1+𝑂(𝑝𝐻) and (1−𝑝𝐸𝑝𝐻)𝜂 = 𝜆𝐸−𝜆𝐻

𝜆𝐸
𝑒𝑐

′
1
√
𝑝𝐻+𝑂(𝑝𝐻) =

𝜆𝐸−𝜆𝐻

𝜆𝐸
(1+𝑐′1

√
𝑝𝐻+𝑜(

√
𝑝𝐻)),

therefore:

𝑔(𝜂 + 1)

𝑓(𝜂)
=
𝜆𝐻 + 𝜆𝐸 − 𝜆𝐻 − (𝜆𝐸 − 𝜆𝐻)(1 + 𝑐′1

√
𝑝𝐻) + 𝑜(

√
𝑝𝐻)

𝜆𝐻
(︀
1− 2𝑝𝐸

√
𝑝𝐻
)︀
+𝑂(𝑝𝐻)

= 1−
(︂
𝜆𝐸 − 𝜆𝐻
𝜆𝐻

𝑐′1 − 2𝑝𝐸

)︂
√
𝑝𝐻 + 𝑜(

√
𝑝𝐻).

= 1−√𝑝𝐻 + 𝑜(
√
𝑝𝐻).

Where we fixed 𝑐′1 = 𝜆𝐻(1+2𝑝𝐸)
𝜆𝐸−𝜆𝐻

. Using Lemma 1 with [𝑋(𝑡), 𝑌 (𝑡)] = [𝐻ℬ𝐻 (𝑡), 𝐸ℬ𝐻 (𝑡)],

𝑘 = 𝑝
−3/4
𝐻 and 𝜌 = 𝑔(𝜂+1)

𝑓(𝜂)
, we get 𝜌𝑘 = 𝑜(𝑝2𝐻) and:

P[𝐻ℬ𝐻 ≤ 𝜂 − 𝑘] ≤ 𝜂 · 𝑜(𝑝4𝐻)
(︂
1 +

1

𝑓(𝜂)− 𝑔(𝜂 + 1)

)︂
+

𝜌𝑘

1− 𝜌

≤ 𝜂 · 𝑜(𝑝4𝐻)
(︂
1 +

1

𝑓(𝜂)
√
𝑝𝐻 + 𝑜(

√
𝑝𝐻)

)︂
+

𝑜(𝑝2𝐻)√
𝑝𝐻 + 𝑜(

√
𝑝𝐻)

= 𝑜(𝑝𝐻).

Taking 𝑐1 = 𝑐′1 + 𝑝𝐸, this enables us to conclude that

P[𝐻ℬ𝐻 ≤ 1

𝑝𝐸𝑝𝐻

(︂
ln

(︂
𝜆𝐸

𝜆𝐸 − 𝜆𝐻

)︂
− 𝑐1𝑝1/4𝐻

)︂
] ≤ 𝑜(𝑝𝐻).

In the case 𝜆𝐻 > 𝜆𝐸, Let 𝜂 = 1
𝑝2𝐻

(︁
ln
(︁

2𝜆𝐻

𝜆𝐻+𝜆𝐸

)︁
− 𝑐′2𝑝

1/4
𝐻

)︁
. Using Facts 1 and 2, we have

245



(1− 𝑝2𝐻)𝜂 = 𝜆𝐻+𝜆𝐸

2𝜆𝐻
𝑒𝑐

′
2𝑝

1/4
𝐻 +𝑂(𝑝2𝐻) and (1− 𝑝𝐸𝑝𝐻)𝜂 = 𝑂(𝑝2𝐻). This implies that:

𝜌 =
𝑔(𝜂 + 1)

𝑓(𝜂)
=

(𝜆𝐻 + 𝜆𝐸)− (𝜆𝐻+𝜆𝐸)
2

𝑒𝑐
′
2
√
𝑝𝐻 +𝑂(𝑝2𝐻)

(𝜆𝐻+𝜆𝐸)
2

𝑒𝑐
′
2

√
𝑝𝐻
(︀
1− 2𝑝𝐸

√
𝑝𝐻
)︀
+𝑂(𝑝2𝐻)

=
2− (1 + 𝑐′2

√
𝑝𝐻)

(1 + 𝑐′2
√
𝑝𝐻)(1− 2𝑝𝐸

√
𝑝𝐻)

+ 𝑜(
√
𝑝𝐻)

= 1− (2𝑐′2 − 2𝑝𝐸)
√
𝑝𝐻 + 𝑜(

√
𝑝𝐻)

= 1−√𝑝𝐻 + 𝑜(
√
𝑝𝐻).

Where we have chosen 𝑐′2 =
1+2𝑝𝐸

2
. Taking 𝑘 = 𝑝

−3/4
𝐻 , we have 𝜌𝑘 = 𝑜(𝑝2𝐻). Applying Lemma

1, we get that for all :

P[𝐻ℬ𝐻 ≤ 𝜂 − 𝑘] ≤ 𝜂 · 𝑜(𝑝4𝐻)
(︂
1 +

1

𝑓(𝜂)− 𝑔(𝜂 + 1)

)︂
+

𝜌𝑘

1− 𝜌

= 𝜂 · 𝑜(𝑝3𝐻) +
𝑜(𝑝2𝐻)

𝑓(𝜂)
√
𝑝𝐻 + 𝑜(

√
𝑝𝐻)

= 𝑜(𝑝𝐻)

Taking 𝑐2 = 𝑐′2 + 1, this enables us to conclude that

P[𝐻ℬ𝐻 ≤ 1

𝑝2𝐻

(︂
ln

(︂
2𝜆𝐻

𝜆𝐻 + 𝜆𝐸

)︂
− 𝑐2
√
𝑝𝐻

)︂
] ≤ 𝑜(𝑝𝐻).

B.3 Missing proofs for BilateralMatch(E)

The proof of Theorem 4 relies on a concentration result on the left tail of the distribution of

𝐻ℬ𝐸 (Proposition 19), and a coupling argument to upper-bound E[𝐻ℬ𝐸 ] (Proposition 20).

Proposition 19. [Lower Bound] Under ℬ𝐸 in steady-state,

- If 𝜆𝐻 < 𝜆𝐸, there exist a function 𝛾(𝑝𝐻) = 1−√𝑝𝐻 + 𝑜(
√
𝑝𝐻) and a constant 𝑐5 ≥ 0
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such that for all 𝑘 ≥ 0:

P
[︂
𝐻ℬ𝐸 ≤ 1

𝑝𝐸𝑝𝐻

(︂
ln

(︂
𝜆𝐸

𝜆𝐸 − 𝜆𝐻

)︂
− 𝑐5𝑝1/4𝐻

)︂
− 𝑘
]︂
≤ 𝛾(𝑝𝐻)

𝑘

1− 𝛾(𝑝𝐻)
.

- If 𝜆𝐻 > 𝜆𝐸, there exist a function 𝛾′(𝑝𝐻) = 1−√𝑝𝐻 + 𝑜(
√
𝑝𝐻) and a constant 𝑐6 ≥ 0

such that for all 𝑘 ≥ 0:

P
[︂
𝐻ℬ𝐸 ≤ 1

𝑝2𝐻

(︂
ln

(︂
2𝜆𝐻

𝜆𝐻 + 𝜆𝐸

)︂
− 𝑐6
√
𝑝𝐻

)︂
− 𝑘
]︂
≤ 𝛾′(𝑝𝐻)

𝑘

1− 𝛾′(𝑝𝐻)
.

Proposition 20. [Upper-bound] Under ℬ𝐸 and in steady-state,

- If 𝜆𝐻 < 𝜆𝐸, then E[𝐻ℬ𝐸 ] ≤
ln
(︁

2𝜆𝐸
𝜆𝐸−𝜆𝐻

)︁
𝑝𝐸𝑝𝐻

+ 𝑜
(︁

1
𝑝𝐻

)︁
- If 𝜆𝐻 > 𝜆𝐸, then E[𝐻ℬ𝐸 ] ≤ 1

𝑝2𝐻
ln
(︁

2𝜆𝐻

𝜆𝐻+𝜆𝐸

)︁
+ 𝑜

(︁
1
𝑝2𝐻

)︁
.

Proof of Theorem 4. We will first compute a lower bound for E[𝐻ℬ𝐸 ]: Applying Markov

inequality to E[𝐻ℬ𝐸 ] and using Proposition 19 with 𝑘 = 𝑝
−3/4
𝐻 , we get the following lower-

bound on E[𝐻ℬ𝐸 ]:

- If 𝜆𝐻 < 𝜆𝐸, then E[𝐻ℬ𝐸 ] ≥
ln
(︁

𝜆𝐸
𝜆𝐸−𝜆𝐻

)︁
𝑝𝐸𝑝𝐻

+ 𝑜
(︁

1
𝑝𝐻

)︁
.

- If 𝜆𝐻 > 𝜆𝐸, then E[𝐻ℬ𝐸 ] ≥
ln
(︁

2𝜆𝐻
𝜆𝐻+𝜆𝐸

)︁
𝑝2𝐻

+ 𝑜
(︁

1
𝑝2𝐻

)︁
.

Using Proposition 20, we can get the desired upper-bounds for E[𝐻ℬ𝐸 ]. We can conclude

using Little’s law: 𝑤𝐻 = E[𝐻ℬ𝐸 ]
𝜆𝐻

.

B.3.1 Proof of Proposition 19.

In order to prove Proposition 19, we first need a concentration result on 𝐸ℬ𝐸 agents. This

is stated in Lemma 14.
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Lemma 14. Under ℬ𝐸 in steady-state, for any 𝛼 ∈ [0, 1], let 𝑛𝐸(𝛼) =
ln(𝛼/(1+𝛼(1−𝑝2𝐸))

ln(1−𝑝2𝐸))
. For

any 𝑘 ≥ 0, we have:

P
[︀
𝐸ℬ𝐸 ≥ 𝑛𝐸(𝛼) + 𝑘

]︀
≤ 𝛼𝑘

1− 𝛼
.

Also, (1− 𝑝2𝐸)𝑛𝐸(𝛼) = 𝛼
1+𝛼(1−𝑝2𝐸)

.

Proof. In the same way that upper-bounding 𝐻 agents when they get priority is easy because

waiting 𝐸 agents can be ignored, upper-bounding the number of 𝐸 agents is easy when they

get the priority because 𝐻 agents can be ignored. We can get the following bounds on the

transition probabilities: 𝑄ℬ𝐸([ℎ, 𝑒], [ℎ, 𝑒 + 1]) ≤ 𝜆𝐸(1 − 𝑝2𝐸)𝑒 = 𝑓(𝑒), and 𝑄ℬ𝐸([ℎ, 𝑒], [ℎ, 𝑒 −

1]) ≥ 𝜆𝐸(1− (1− 𝑝2𝐸)𝑒) = 𝑔(𝑒) which leads to:

𝑓(𝑒)

𝑔(𝑒+ 1)
=

(1− 𝑝2𝐸)𝑒

1− (1− 𝑝2𝐸)𝑒+1
.

Setting 𝜂 = 𝑛𝐸(𝛼) to be the solution to 𝑓(𝑛)
𝑔(𝑛+1)

= 𝛼, and applying Lemma 2 with 𝑆(𝑒) = N

and [𝑋(𝑡), 𝑌 (𝑡)] = [𝐸(𝑡), 𝐻(𝑡)], for all ℎ, 𝑐 = 0 and 𝛿 = 0, we get the desired result.

We can now prove Proposition 19.

Proof of Proposition 19. Notice that 𝑄ℬ𝐸([ℎ, 𝑒], [ℎ+ 1, 𝑒]) = 𝑄ℬ𝐻 ([ℎ, 𝑒], [ℎ+ 1, 𝑒]), therefore

the function 𝑓(ℎ) = 𝜆𝐻(1 − 𝑝2𝐻)ℎ
(︀
1− 2𝑝𝐸

√
𝑝𝐻
)︀
+ 𝑜(
√
𝑝𝐻) used in the proof of Proposition

4 remains a lower bound for 𝑒 ∈ 𝑆 =
{︁
𝑒 ≤ 2𝑝

−1/2
𝐻

}︁
. Furthermore, 𝑄ℬ𝐸([ℎ, 𝑒], [ℎ − 1, 𝑒]) ≤

𝑄ℬ𝐻 ([ℎ, 𝑒], [ℎ− 1, 𝑒]) therefore the function 𝑔(ℎ) = 𝜆𝐻(1− (1− 𝑝2𝐻)ℎ) + 𝜆𝐸(1− (1− 𝑝𝐸𝑝𝐻)ℎ)

remains an upper bound. Therefore, the proof is exactly the same as the proof for the

lower bounds for Proposition 4, except that instead of Lemma 13 we use Lemma 14 in the

special case 𝑛𝐸(𝛼) = 𝑝
−1/2
𝐻 with 𝑆 =

{︁
𝑒 ∈ R, 𝑒 ≤ 2𝑝

−1/2
𝐻

}︁
, and 𝑘 = 𝑝

−1/2
𝐻 . We still have,

P[𝐸ℬ𝐻 ̸∈ 𝑆] = 𝑜(𝑝4𝐻).

B.3.2 Proof of Propostion 20

This proof is based on a coupling argument: instead of analysing the CTMC resulted from

ℬ𝐸, we analyse the CTMC underlying another process that we call ̃︁ℬ𝐸. ̃︁ℬ𝐸 works similarly
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to ℬ𝐸 with one crucial difference: each time an 𝐸 agent arrives which cannot be matched

immediately, it changes type and becomes an 𝐻 agent and then joins the market. First note

that under ̃︁ℬ𝐸, no 𝐸 agent joins the market, making its underlying CTMC a 1-dimensional

Markov chain. Proving that the stochasitc process underlying ̃︁ℬ𝐸 is a positive recurrent

CTMC, and therefore it reaches steady-state is similar to the proof of positive recurrence of

ℬ𝐸 (See Claim 17) and therefore omitted.

Using a coupling argument we show that in steady-state number of 𝐻 agents under ℬ𝐸
can be upper-bounded by the number of 𝐻 agents under ̃︁ℬ𝐸. Our motivation behind defining̃︁ℬ𝐸 is that in ℬ𝐸, unmatched 𝐸 agents in the market are competing against 𝐻 agents over

whom they have priority. The idea is that by turning unmatched 𝐸 agents into 𝐻 ones, we

expect to have more 𝐻 agents waiting. Let 𝐻 ̃︁ℬ𝐸 be the random number of 𝐻 agents under̃︁ℬ𝐸 in steady-state. First in the next lemma we show that E[𝐻ℬ𝐸 ] ≤ E[𝐻 ̃︁ℬ𝐸 ] + 1, then we

compute an upper-bound on E[𝐻 ̃︁ℬ𝐸 ].

Lemma 15. E[𝐻ℬ𝐸 ] ≤ E[𝐻 ̃︁ℬ𝐸 ] + 1.

Proof. Consider two copies of the arrival process, one under the setting of ℬ𝐸 and one under̃︁ℬ𝐸. Let [𝐻ℬ𝐸
𝑘 , 𝐸ℬ𝐸

𝑘 ] and 𝐻
̃︁ℬ𝐸
𝑘 denote the embedded (discrete-time) Markov chain resulting

from observing the two dynamic systems at arrival epochs. We will prove the following

(stronger) result: there exists a coupling such that at any step 𝑘, 𝐻ℬ𝐸
𝑘 + 𝐸ℬ𝐸

𝑘 ≤ 𝐻
̃︁ℬ𝐸
𝑘 + 1.

We start by coupling all arrivals: with probability 𝜆𝐻

𝜆𝐸+𝜆𝐻
( 𝜆𝐸

𝜆𝐸+𝜆𝐻
), arrivals to ℬ𝐸 and ̃︁ℬ𝐸

at 𝑘 are both 𝐻 (𝐸) agents. Three cases can happen:

1. 𝐻ℬ𝐸
𝑘 + 𝐸ℬ𝐸

𝑘 < 𝐻
̃︁ℬ𝐸
𝑘 ; in this case, we let the two chains evolve independently.

2. 𝐻 ̃︁ℬ𝐸
𝑘 ≤ 𝐻ℬ𝐸

𝑘 + 𝐸ℬ𝐸
𝑘 ≤ 𝐻

̃︁ℬ𝐸
𝑘 + 1. Let ℎ = 𝐻

̃︁ℬ𝐸
𝑘 . We consider two sub-cases:

(a) The arrival at 𝑘+1 is an𝐻 agent. We couple the events that ̃︁ℬ𝐸 and ℬ𝐸 cannot find

a match as follows: we draw two independent Bernoulli random variables B1, B2

with respective parameters of (1−𝑝2𝐻)ℎ and (1−𝑝2𝐻)𝐻
ℬ𝐸
𝑘 (1−𝑝𝐻𝑝𝐸)𝐸

ℬ𝐸
𝑘 (1− 𝑝2𝐻)−ℎ.

B1 = 1 corresponds to the event that ̃︁ℬ𝐸 cannot find a match; similarly B1B2 = 1

corresponds to the event that ℬ𝐸 cannot find a match.
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(b) The arrival at 𝑘 + 1 is an 𝐸 agent. Similarly we couple the events that ̃︁ℬ𝐸 and

ℬ𝐸 cannot find a match as follows: we draw two independent Bernoulli random

variables B3, B4 with respective parameters of

(1− 𝑝𝐸𝑝𝐻)ℎ and (1− 𝑝𝐸𝑝𝐻)𝐻
ℬ𝐸
𝑘 (1− 𝑝2𝐸)𝐸

ℬ𝐸
𝑘 (1− 𝑝𝐸𝑝𝐻)−ℎ.

B3 = 1 corresponds to the event that ̃︁ℬ𝐸 cannot find a match. Similarly B3B4 = 1

corresponds to the event that ℬ𝐸 cannot find a match.

3. 𝐻ℬ𝐸
𝑘 + 𝐸ℬ𝐸

𝑘 > 𝐻
̃︁ℬ𝐸
𝑘 + 1; in this case, we let the two chains evolve independently.

Having the above coupling, we finish the proof by induction. The base case 𝑘 = 0 is trivial:

𝐻ℬ𝐸
0 +𝐸ℬ𝐸

0 = 𝐻
̃︁ℬ𝐸
0 = 0. Suppose𝐻ℬ𝐸

𝑘 +𝐸ℬ𝐸
𝑘 ≤ 𝐻

̃︁ℬ𝐸
𝑘 +1, we show that𝐻ℬ𝐸

𝑘+1+𝐸
ℬ𝐸
𝑘+1 ≤ 𝐻

̃︁ℬ𝐸
𝑘+1+1:

In Case (1), note that the number of agents waiting can increase or decrease by at most 1.

For both cases, we have 𝐻ℬ𝐸
𝑘+1 + 𝐸ℬ𝐸

𝑘+1 ≤ 𝐻
̃︁ℬ𝐸
𝑘+1 + 1. In Case (2a), we have:

- If B1 = 0, then 𝐻 ̃︁ℬ𝐸
𝑘+1 = 𝐻

̃︁ℬ𝐸
𝑘 − 1. Further if B1 = 0 then B1B2 = 0, and 𝐻ℬ𝐸

𝑘+1+𝐸ℬ𝐸
𝑘+1 =

𝐻ℬ𝐸
𝑘 + 𝐸ℬ𝐸

𝑘 − 1. Therefore 𝐻ℬ𝐸
𝑘+1 + 𝐸ℬ𝐸

𝑘+1 ≤ 𝐻
̃︁ℬ𝐸
𝑘+1 + 1

- If B1 = 1, then 𝐻
̃︁ℬ𝐸
𝑘+1 = 𝐻

̃︁ℬ𝐸
𝑘 + 1. Note that number of agents under ℬ𝐸 can increase

by at most one, therefore 𝐻ℬ𝐸
𝑘+1 + 𝐸ℬ𝐸

𝑘+1 ≤ 𝐻
̃︁ℬ𝐸
𝑘+1 + 1.

Similarly in Case (2b), we have:

- If B3 = 0, then 𝐻 ̃︁ℬ𝐸
𝑘+1 = 𝐻

̃︁ℬ𝐸
𝑘 − 1. Further if B3 = 0 then B3B4 = 0, and 𝐻ℬ𝐸

𝑘+1+𝐸ℬ𝐸
𝑘+1 =

𝐻ℬ𝐸
𝑘 + 𝐸ℬ𝐸

𝑘 − 1; therfore 𝐻ℬ𝐸
𝑘+1 + 𝐸ℬ𝐸

𝑘+1 ≤ 𝐻
̃︁ℬ𝐸
𝑘+1 + 1

- If B3 = 1, then 𝐻
̃︁ℬ𝐸
𝑘+1 = 𝐻

̃︁ℬ𝐸
𝑘 + 1. Note that number of agents under ℬ𝐸 can increase

by at most one, therefore and 𝐻ℬ𝐸
𝑘+1 + 𝐸ℬ𝐸

𝑘+1 ≤ 𝐻
̃︁ℬ𝐸
𝑘+1 + 1.

Thus, in all possible cases 𝐻ℬ𝐸
𝑘+1 + 𝐸ℬ𝐸

𝑘+1 ≤ 𝐻
̃︁ℬ𝐸
𝑘+1 + 1 finishing the proof. Note that the

above induction also implies that Case (3) never occurs.
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Proof of Proposition 20. Observe that the CTMC 𝐻
̃︁ℬ𝐸
𝑡 has the following rate matrix:

𝑄
̃︁ℬ𝐸(ℎ, ℎ+ 1) = 𝜆𝐻(1− 𝑝2𝐻)ℎ + 𝜆𝐸(1− 𝑝𝐸𝑝𝐻)ℎ

𝑄
̃︁ℬ𝐸(ℎ, ℎ− 1) = 𝜆𝐻(1− (1− 𝑝2𝐻)ℎ) + 𝜆𝐸(1− (1− 𝑝𝐸𝑝𝐻)ℎ)

And let us define:

𝜌(ℎ) =
𝑄

̃︁ℬ𝐸(ℎ, ℎ+ 1)

𝑄̃︁ℬ𝐸(ℎ+ 1, ℎ)
=

𝜆𝐻(1− 𝑝2𝐻)ℎ + 𝜆𝐸(1− 𝑝𝐸𝑝𝐻)ℎ

𝜆𝐻(1− (1− 𝑝2𝐻)ℎ+1) + 𝜆𝐸(1− (1− 𝑝𝐸𝑝𝐻)ℎ+1)
.

Note that 𝜌(ℎ) is a decreasing function, and suppose that there exists 𝜂 ≥ 0 such that

𝜌(𝜂) < 1 − √𝑝𝐻 and let 𝜋 = 𝜋(ℎ)ℎ≥0 be the stationnary distribution of 𝐻 ̃︁ℬ𝐸 . Then we

have for all 𝑖 ≥ 0, 𝜋(𝜂 + 𝑖) ≤ 𝜌(𝜂)𝑖𝜋(𝜂) ≤ 𝜌(𝜂)𝑖 and for all 𝑘 ≥ 0, P[𝐻 ̃︁ℬ𝐸 ≥ 𝜂 + 𝑘] ≤

𝜋(𝜂)
∑︀

𝑖≥𝑘 𝜌(𝜂)
𝑖 ≤ 𝜌(𝜂)𝑘

1−𝜌(𝜂)
. We then have

E[𝐻 ̃︁ℬ𝐸 ] =
∑︁
ℎ≥1

P[𝐻 ̃︁ℬ𝐸 ≥ ℎ]

E[𝐻 ̃︁ℬ𝐸 ] ≤ (𝜂 + 𝑘) +
∑︁

ℎ≥𝜂+𝑘

P[𝐻 ̃︁ℬ𝐸 ≥ ℎ]

E[𝐻 ̃︁ℬ𝐸 ] ≤ (𝜂 + 𝑘) +
𝜌(𝜂)𝑘

(1− 𝜌(𝜂))2

Let us consider the case when 𝜆𝐻 < 𝜆𝐸. Let 𝜂 =
ln(1/𝑢)+𝑐

√
𝑝𝐻

𝑝𝐸𝑝𝐻
. For ℎ ≥ 𝜂, we have

(1 − 𝑝𝐸𝑝𝐻)ℎ ≤ 𝑢
(︀
1− 𝑐√𝑝𝐻 + 𝑜(

√
𝑝𝐻)
)︀

and (1 − 𝑝2𝐻)ℎ ≤ 1 − ln(1/𝑢)𝑝2𝐻 + 𝑜(𝑝2𝐻). We have

𝜌(𝜂) =
𝜆𝐻+𝜆𝐸𝑢(1−𝑐

√
𝑝𝐻)

𝜆𝐸(1−𝑢(1−𝑐
√
𝑝𝐻))

+ 𝑜(
√
𝑝𝐻). Taking 𝑢 = 𝜆𝐸−𝜆𝐻

2𝜆𝐸
and 𝑐 = 𝜆𝐸+𝜆𝐻

2(𝜆𝐸−𝜆𝐻)
, we get 𝜌(𝜂) =

1−√𝑝𝐻 + 𝑜(
√
𝑝𝐻). Taking 𝑘 = 𝑝

−3/4
𝐻 we get:

E[𝐻 ̃︁ℬ𝐸 ] ≤ 𝜂 + 𝑜(1/𝑝𝐻) =
ln( 2𝜆𝐸

𝜆𝐸−𝜆𝐻
)

𝑝𝐸𝑝𝐻
+ 𝑜(1/𝑝𝐻), 𝜆𝐻 < 𝜆𝐸. (B.1)

In the case when 𝜆𝐻 > 𝜆𝐸, let 𝜂 =
ln(1/𝑢)+𝑐

√
𝑝𝐻

𝑝2𝐻
. For ℎ ≥ 𝜂, we have (1 − 𝑝𝐸𝑝𝐻)ℎ = 𝑜(𝑝𝐻)

and (1 − 𝑝2𝐻)ℎ ≤ 𝑢(1 − 𝑐√𝑝𝐻) + 𝑜(
√
𝑝𝐻). Taking 𝑢 = 𝜆𝐻+𝜆𝐸

2𝜆𝐻
and 𝑐 = 1/2, we get 𝜌(𝜂) =
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1−√𝑝𝐻 + 𝑜(
√
𝑝𝐻). Taking 𝑘 = 𝑝

−3/4
𝐻 we get:

E[𝐻 ̃︁ℬ𝐸 ] ≤ 𝜂 + 𝑜(1/𝑝2𝐻) =
ln( 2𝜆𝐻

𝜆𝐸+𝜆𝐻
)

𝑝2𝐻
+ 𝑜(1/𝑝2𝐻), 𝜆𝐻 > 𝜆𝐸. (B.2)

Putting Lemma 15 and upper-bounds given in (B.1) and (B.2) together finishes the proof.

B.4 Missing proofs for ChainMatch(d)

Proof of Proposition 2. As pointed at the end of Subsection 5.5.4, when 𝑝𝐸 = 1, an arriving

𝐸 agent is matched immediately by a bridge agent, implying that 𝐸𝒞(𝑑)
𝑡 = 0 and 𝐻

𝒞(𝑑)
𝑡 =

𝐻
𝒞(𝑑)
𝑡 ; consequently Proposition 6 implies the limit stated in the Proposition 2.

Further note that fixing 𝜆𝐻 , it is straightforward to check that function 𝑓(𝜆𝐸) =
ln
(︁

𝜆𝐻
𝜆𝐸

+1
)︁

𝜆𝐻

is decreasing for 𝜆𝐸 > 0. Similarly fixing 𝜆𝐸, it is straightforward to check that function

𝑔(𝜆𝐻) =
ln
(︁

𝜆𝐻
𝜆𝐸

+1
)︁

𝜆𝐻
is decreasing for 𝜆𝐻 > 0.

Proof of Corollary 3. First we observe that ln
(︁

𝜆𝐻

𝜆𝐸(1−(1−𝑝𝐸)𝑑)
+ 1
)︁

is decreasing in 𝑑. There-

fore the worst upper-bound on 𝑤𝒞(𝑑)
𝐻 is for 𝑑 = 1. Next we show that:

ln

(︂
𝜆𝐻
𝜆𝐸𝑝𝐸

+ 1

)︂𝑝𝐸

≤ ln

(︂
𝜆𝐻
𝜆𝐸

+ 1

)︂
≤ ln

(︂
𝜆𝐻

𝜆𝐸 − 𝜆𝐻
+ 1

)︂
,

where the first inequality holds because function 𝑓(𝑥) := (𝜆𝐻/𝜆𝐸

𝑥
+ 1)𝑥 is increasing in 𝑥 ∈

(0, 1].

Proof of Proposition 3. In steady-state, for any function 𝑓(·, ·), we have

E[𝑓(𝐻𝑘, 𝐸𝑘)− 𝑓(𝐻𝑘+1, 𝐸𝑘+1)] = 0,
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For 𝑓(ℎ, 𝑒) = ℎ+ 𝑒, using our notation: Λ = 𝜆𝐻(1− (1− 𝑝𝐻)𝑑) + 𝜆𝐸(1− (1− 𝑝𝐸)𝑑), we get:

0 = (𝜆𝐻(1− 𝑝𝐻)𝑑 + 𝜆𝐸(1− 𝑝𝐸)𝑑)E[𝐻𝑘 + 𝐸𝑘 −𝐻𝑘+1 − 𝐸𝑘+1|𝐻𝑘 + 𝐸𝑘 < 𝐻𝑘+1 + 𝐸𝑘+1]

+ ΛE[𝐻𝑘 + 𝐸𝑘 −𝐻𝑘+1 − 𝐸𝑘+1|𝐻𝑘 + 𝐸𝑘 ≥ 𝐻𝑘+1 + 𝐸𝑘+1]

= −(𝜆𝐻(1− 𝑝𝐻)𝑑 + 𝜆𝐸(1− 𝑝𝐸)𝑑) + ΛE[𝐿− 1 | 𝐿 ≥ 1].

(B.3)

This gives us:

E[𝐿 | 𝐿 ≥ 1] =
𝜆𝐻(1− 𝑝𝐻)𝑑 + 𝜆𝐸(1− 𝑝𝐸)𝑑

(𝜆𝐻(1− (1− 𝑝𝐻)𝑑) + 𝜆𝐸(1− (1− 𝑝𝐸)𝑑))
+1 =

𝜆𝐻 + 𝜆𝐸(1− 𝑝𝐸)𝑑

𝜆𝐸(1− (1− 𝑝𝐸)𝑑)
+1+𝑜(1).

B.5 Heuristic argument for ChainMatch(d)

In what follows we provide a heuristic analysis of the CTMC underlying the ChainMatch(d).

This heuristic adds intuition for the behavior of the policy and further establishes what is

supposedly the right constant in the case in which our theory only generates an upper bound

(𝑝𝐸 < 1).

We introduce an auxiliary 3-dimensional CTMC, in which a chain-segment is not formed

instantaneously; instead a chain-segment can only advance at certain “tokens” (or times)

that arrive according to a Poisson process with rate 𝜇1. We denote this auxiliary CTMC bỹ︀𝒞(𝑑, 𝜇) and its states by [𝐻
̃︀𝒞(𝑑,𝜇)
𝑡 , 𝐸

̃︀𝒞(𝑑,𝜇)
𝑡 , 𝑈𝑡] ∈ N2×{0, 1}. The first two dimensions represent

the number of 𝐻 and 𝐸 agents. The third dimension 𝑈𝑡 indicates whether a chain-segment

is being conducted. Initially 𝑈0 = 0. Suppose at time 𝑡1 the first agent 𝑖 arrives that is

matched by an altruistic agent. At this time 𝑈𝑡1 becomes 1 indicating that a chain-segment

formation is in process. The policy waits 𝑥 unit of time for a token to arrive to find an agent

1This process is independent from the Poisson processes guiding the arrivals of 𝐻 and 𝐸 agents.
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who can be matched by 𝑖 (note that 𝑥 is exponentially distributed with rate 𝜇)2. If such an

agent does not exist, then chain-segment is stopped; and 𝑈𝑡1+𝑥 becomes 0. Otherwise 𝑈𝑡1+𝑥

remains 1 and the same process repeats. The transition rates of ̃︀𝒞(𝑑, 𝜇) are:

𝑄
̃︀𝒞(𝑑,𝜇)([ℎ, 𝑒, 0], [ℎ+ 1, 𝑒, 0]) = 𝜆𝐻(1− 𝑝𝐻)𝑑 (B.4a)

𝑄
̃︀𝒞(𝑑,𝜇)([ℎ, 𝑒, 0], [ℎ, 𝑒+ 1, 0]) = 𝜆𝐸(1− 𝑝𝐸)𝑑 (B.4b)

𝑄
̃︀𝒞(𝑑,𝜇)([ℎ, 𝑒, 0], [ℎ, 𝑒, 1]) = 𝜆𝐻(1− (1− 𝑝𝐻)𝑑) + 𝜆𝐸(1− (1− 𝑝𝐸)𝑑) (B.4c)

𝑄
̃︀𝒞(𝑑,𝜇)([ℎ, 𝑒, 1], [ℎ, 𝑒, 0]) = 𝜇(1− 𝑝𝐻)ℎ(1− 𝑝𝐸)𝑒 (B.4d)

𝑄
̃︀𝒞(𝑑,𝜇)([ℎ, 𝑒, 1], [ℎ− 1, 𝑒, 1]) = 𝜇

(︀
1− (1− 𝑝𝐻)ℎ

)︀
(B.4e)

𝑄
̃︀𝒞(𝑑,𝜇)([ℎ, 𝑒, 1], [ℎ, 𝑒− 1, 1]) = 𝜇(1− 𝑝𝐻)ℎ (1− (1− 𝑝𝐸)𝑒) (B.4f)

[h, e, 0] [h+1, e, 0][h-1, e, 0]

[h, e, 1]
[h+1, e, 1][h-1, e, 1]

......

......

𝜆𝐻(1− 𝑝𝐻)𝑑𝜆𝐻(1− 𝑝𝐻)𝑑

𝜆𝐻(1− (1− 𝑝𝐻)𝑑)

+𝜆𝐸(1− (1− 𝑝𝐸)𝑑)
𝜇(1− 𝑝𝐻)ℎ(1− 𝑝𝑒)𝑒

𝜇
(︀
1− (1− 𝑝𝐻)ℎ+1

)︀
𝜇
(︀
1− (1− 𝑝𝐻)ℎ

)︀

Figure B-1: Transitions for the CTMC underlying ̃︀𝒞(𝑑, 𝜇) in the first and third dimensions,
i.e, transitions to states with a different number of 𝐸 agents are not shown. Transition rates
are given only for solid arrows.

2Note that it is possible that there is a new arrivals of 𝐻 and/or 𝐸 agents in the interval (𝑡1, 𝑡1 + 𝑥]. In
this heuristic, we assume that the arriving 𝐻 or 𝐸 agent is deleted. The intuition is that when 𝜇 is large,
this event happens rarely.
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Figure B-1 illustrates the transitions of ̃︀𝒞(𝑑, 𝜇) in 𝐻
̃︀𝒞(𝑑,𝜇)
𝑡 and 𝑈𝑡 dimensions along with

the transition rates. The rate (B.4a) ((B.4b)) corresponds to the event that an 𝐻 (𝐸) agent

arrives but cannot be matched by any bridge agent which happens with probability (1−𝑝𝐻)𝑑

((1−𝑝𝐸)𝑑). The rate (B.4c) corresponds to the case an 𝐻 arrives and starts a chain-segment

(occurs with probability (1 − (1 − 𝑝𝐻)𝑑)) or an 𝐸 agent arrives and starts a chain-segment

(occurs with probability (1−(1−𝑝𝐸)𝑑); similarly (B.4d) represents the case where the chain-

segment cannot advance any further (happens with probability (1−𝑝𝐻)ℎ(1−𝑝𝐸)𝑒). The last

two rates correspond to adding one more 𝐻 and 𝐸 agent to the chain-segment respectively

(with probability
(︀
1− (1− 𝑝𝐻)ℎ

)︀
and (1− 𝑝𝐻)ℎ (1− (1− 𝑝𝐸)𝑒) respectively).

Similar to the heuristic argument for BilateralMatch(H) and BilateralMatch(E), we can

try to solve the following system of nonlinear equations (that result from setting expected

drifts in all three dimensions to be zero):

E
[︁
ΛI(𝑈 = 0)− 𝜇(1− 𝑝𝐻)𝐻

̃︀𝒞(𝑑,𝜇)

(1− 𝑝𝐸)𝐸
̃︀𝒞(𝑑,𝜇)I(𝑈 = 1)

]︁
= 0

E
[︁
𝜆𝐸(1− 𝑝𝐸)𝑑I(𝑈 = 0)− 𝜇(1− 𝑝𝐻)𝐻

̃︀𝒞(𝑑,𝜇)

(1− (1− 𝑝𝐸)𝐸
̃︀𝒞(𝑑,𝜇)

)I(𝑈 = 1)
]︁
= 0

E
[︁
𝜆𝐻(1− 𝑝𝐻)𝑑I(𝑈 = 0)− 𝜇(1− (1− 𝑝𝐻)𝐻

̃︀𝒞(𝑑,𝜇)

)I(𝑈 = 1)
]︁
= 0,

where I(·) is the indicator function. We find that ln
(︁

𝜆𝐻+𝜆𝐸

𝜆𝐻(1−(1−𝑝𝐻)𝑑)+𝜆𝐸

)︁
/𝑝𝐻 is an approximate

solution for E[𝐻 ̃︀𝒞(𝑑,𝜇)]. Further, note that in ̃︀𝒞(𝑑, 𝜇) if an 𝐻/𝐸 agent arrives while a chain-

segment is being formed then the agent will not join the market. However, probability of

such an event vanishes as 𝜇 → ∞ (i.e, forming chain-segments becomes instantaneous).

Therefore, it is reasonable to approximate E[𝐻𝒞(𝑑)] with lim𝜇→∞ E[𝐻 ̃︀𝒞(𝑑,𝜇)], and thus with

ln
(︁

𝜆𝐻+𝜆𝐸

𝜆𝐻(1−(1−𝑝𝐻)𝑑)+𝜆𝐸

)︁
/𝑝𝐻 . Finally note that:

lim
𝑝𝐻→0

ln

(︂
𝜆𝐻 + 𝜆𝐸

𝜆𝐻(1− (1− 𝑝𝐻)𝑑) + 𝜆𝐸

)︂
= ln

(︂
𝜆𝐻 + 𝜆𝐸
𝜆𝐸

)︂
,

which is the constant in Proposition 2.

We emphasize that the analysis above is only a heuristic for guessing the right constant
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when 𝑝𝐸 < 1. We refer the reader to Section 5.4.5 for numerical simulations that show the

tightness of this constant.

B.6 Intuition and another heuristic for limit of 𝑤𝒞(𝑑)𝐻

In this section, we provide another heuristic argument that explains why 𝑝𝐸 and 𝑑 do not

impact waiting time in the limit.

Let us look at the formation of a chain-segment starting with an 𝐸 agent; it will have

the following structure: 𝐸 −𝐻 − . . .−𝐻 − 𝐸 −𝐻 − . . .−𝐻 − 𝐸 −𝐻 − . . .−𝐻; in other

words, the chain-segment can be divided into sub-segments, each starting with an 𝐸 agent,

and following by a number of 𝐻 agents until the sub-segment gets “stuck”, meaning that

there is no 𝐻 agent that can continue the sub-segment (Recall that priority is given to 𝐻

agents; therefore we will not search among 𝐸 agents as long as there is an 𝐻 agent that

can continue the sub-segment). At that stage, the policy will look for an 𝐸 agent to start a

new sub-segment. Let Σ𝐸 be the number of 𝐻 agents in each sub-segment (between two 𝐸

agents).

Next, let us look at the formation of a chain-segment starting with an 𝐻 agent; the chain-

segment has the following structure: 𝐻−𝐻− . . .−𝐻−𝐸−𝐻− . . .−𝐻−𝐸−𝐻− . . .−𝐻,

i.e, the first sub-segment starts with an 𝐻, but all the subsequent ones start with an 𝐸. Let

us denote the expected number of 𝐻 agents in the very first sub-segment by Σ𝐻 .

With the above, let us consider the rate at which 𝐻 agents join the market and the rate

at which they depart. The former is simply 𝜆𝐻(1 − 𝑝𝐻)𝑑. The latter is 𝜆𝐸E[Σ𝐸] + 𝜆𝐻 [1 −

(1− 𝑝𝐻)𝑑](E[Σ𝐻 ]−1). Thus by conservation of 𝐻 agents, we have:

(1− 𝑝𝐻)𝑑𝜆𝐻 = 𝜆𝐸E[Σ𝐸] + 𝜆𝐻 [1− (1− 𝑝𝐻)𝑑](E[Σ𝐻 ]−1).

Note that Proposition 3 - which shows that the expected length of a chain-segment is a

constant - implies that E[Σ𝐻 ] is a constant, because E[Σ𝐻 ] ≤ E[𝐿|𝐿 ≥ 1], and Proposition 3
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states that E[𝐿|𝐿 ≥ 1] remains a constant as 𝑝𝐻 → 0. Therefore, we can conclude that:

E[Σ𝐸] = 𝜆𝐻/𝜆𝐸 + 𝑜(1),

i.e., in the limit 𝑝𝐻 → 0, almost all 𝐻 agents match through sub-segments initiated by

an 𝐸, and the length of such sub-segment only depends on the arrival rates. In other words,

if we view the number of 𝐻 agents that an 𝐸 agent can help match as the “usefulness” of

the 𝐸, this already suggests that (in the limit) the usefulness of an 𝐸 does not depend on

𝑝𝐸 nor on 𝑑.

However, we note that the time at which an 𝐸 agent initiates a sub-segment changes

with 𝑝𝐸:

∙ When 𝑝𝐸 = 1, an arriving 𝐸 agent initiates the first (and only) sub-segment of the

chain-segment.

∙ When 𝑝𝐸 < 1:

– With probability (1− (1−𝑝𝐸)𝑑), the 𝐸 agent is matched by the bridge agent, and

initiates the 1-st sub-segment.

– With probability (1 − 𝑝𝐸)
𝑑, the 𝐸 agent joins the market, and initiates a sub-

segment (that is not the first) at a later time.

Next, we analyze E[Σ𝐸] and relate it to the expected number of 𝐻 agents. Recall that

we denote the random number of 𝐻 agents in steady-state by 𝐻𝒞(𝑑). Consider the first sub-

segment formed upon arrival of an 𝐸 agent that receives from the bridge agent. We denote

this sub-segment by Σ1. Observe that

E[Σ1|𝐻𝒞(𝑑) = ℎ] =
ℎ∑︁

𝑖=1

𝑖−1∏︁
𝑗=0

(1− (1− 𝑝𝐻)ℎ−𝑗) := 𝑔(𝐻𝒞(𝑑) = ℎ). (B.6)
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Note that this equation is the direct consequence of giving priority to𝐻 agents. Therefore,

E[Σ1] = E[E[Σ1|𝐻𝒞(𝑑) = ℎ]] = E[𝑔(𝐻𝒞(𝑑))]. Note that 𝑔(𝐻𝒞(𝑑)) does not depend on 𝑝𝐸 or 𝑑.

We make the following observations:

1. Function 𝑔(·) is a monotone increasing function, therefore it has a well-defined inverse

function. Further, we have:

Claim 15. For 𝑦 > 𝑥, we have 𝑔(𝑦) ≥ 𝑔(𝑥) + ln
(︁

1
1−𝑝𝐻

)︁
(𝑦 − 𝑥).

The above claim implies that if 𝑔(𝑦)− 𝑔(𝑥) = 𝑜(1), then 𝑦 − 𝑥 = 𝑜(1/𝑝𝐻). The proof

of the claim follows the same induction steps as that of Lemma 16; note that function

𝑔(·) has the same form as function 𝑓(·) in that lemma. Therefore, we omit the proof

of the above claim.

2. For 𝑝𝐻 small enough, E[𝑔(𝐻𝒞(𝑑))] = 𝑔(E[𝐻𝒞(𝑑)]) + 𝑜(1). Even though we cannot prove

this concentration result, in Figure B-2, we provide numerical simulation verifying it

for different 𝑝𝐸’s.

pE

0.00 0.25 0.50 0.75 1.00

E[g(N_H)]
g(E[N_H])

 

0.85

0.90

0.95

1.00

1.05

1.10

V
a
lu
e

Figure B-2: Values of 𝑔(E[𝐻𝒞(𝑑)]) and E[𝑔(𝐻𝒞(𝑑))] as a function of 𝑝𝐸, for 𝑝𝐻 = 0.002, 𝜆𝐻 = 2,
𝜆𝐸 = 1, 𝑑 = 1 and 𝑇 = 106.

Finally we claim that for 𝑝𝐻 small enough, E[Σ𝐸] ≈ E[Σ1]; this follows from two obser-

vations:
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1. E[Σ1] is a constant; to see this, we use Proposition 2 which shows that the expected

length of a chain-segment is a constant. Given that E[Σ1] ≤ E[𝐿|𝐿 ≥ 1], we can

conclude that E[Σ1] is also a constant (𝐿 denotes the chain-segment length as it is

defined above Proposition 2). Therefore when the second sub-segment is being formed,

the number of 𝐻 agents in the market will be 𝐻𝒞(𝑑) − Θ(1) ≈ 𝐻𝒞(𝑑) (remember that

𝐻𝒞(𝑑) = Θ(1/𝑝𝐻) following the upper-bound of Theorem 3 and the lower-bound of

Appendix B.9).

2. The number of sub-segments is a constant: this follows from the observation that

number of 𝐸 agents in the market is an upper-bound on the number of sub-segments.

In Lemma 16, we show that the expected number of 𝐸 agents is a constant (independent

of 𝑝𝐻).

Combining the above observations, for sufficiently small 𝑝𝐻 , we have that:

𝑔(E[𝐻𝒞(𝑑)(𝑝𝐸 = 1)]) + 𝑜(1) = 𝜆𝐻/𝜆𝐸 + 𝑜(1) = 𝑔(E[𝐻𝒞(𝑑)(𝑝𝐸 < 1)]) + 𝑜(1), (B.7)

where with a slight abuse of notation we denoted the number of 𝐻 agents in the market

with parameter 𝑝𝐸 by 𝐻𝒞(𝑑)(𝑝𝐸). Since 𝑔(·) has an inverse and using Claim 15, (B.7) implies

that:

𝐻𝒞(𝑑)(𝑝𝐸 = 1) = 𝐻𝒞(𝑑)(𝑝𝐸 < 1) + 𝑜(1/𝑝𝐻). (B.8)

We believe that the approximation becomes exact in the limit 𝑝𝐻 → 0. Even though the

above argument is not rigorous, we hope that it sheds light on why 𝑝𝐸 and 𝑑 do not impact

waiting time in the limit.
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B.7 Positive recurrence proofs

To prove existence of a stationary distribution, we use a special case of a result from [87], as

stated in [98].

Theorem 9 ([87]). Suppose that 𝑋𝑡 is an irreducible continuous time Markov chain, and

suppose that there exist a nonnegative function 𝑉 on 𝑆, a function 𝑤 ≥ 1 on 𝑆, a finite set

𝐶 ⊂ 𝑆, and constants 𝑐 > 0 and 𝑏 ∈ R such that

∑︁
𝑗∈𝑆

𝑞𝑖𝑗𝑉 (𝑗) ≤ −𝑐𝑤(𝑖) + 𝑏 · I𝐶(𝑖) for all 𝑖 ∈ 𝑆,

where I𝐶 denotes the indicator function of the set 𝐶. Then the Markov chain 𝑋 is ergodic.

It is clear that all four markov chains are irreducible, so our proofs will focus on finding

a suitable set 𝐶 and function 𝑉 for each case.

B.7.1 Positive recurrence of ℬ𝐻 and ℬ𝐸.

Claim 16. The CTMC [𝐻ℬ𝐻
𝑡 , 𝐸ℬ𝐻

𝑡 ] defined in (5.3a), (5.3b), (5.3c), (5.3d), is positive re-

current.

Proof. Let 𝑉 ([ℎ, 𝑒]) = ℎ+ 𝑒. Observe that for a continuous time random walk, we can write

for any state 𝑖 = [ℎ, 𝑒]:

∑︁
𝑗∈N2

𝑞𝑖,𝑗𝑉 (𝑗) =
∑︁
𝑗 ̸=𝑖

𝑞𝑖,𝑗(𝑉 (𝑗)− 𝑉 (𝑖))

=𝑄([ℎ, 𝑒], [ℎ+ 1, 𝑒])−𝑄([ℎ, 𝑒], [ℎ− 1, 𝑒]) +𝑄([ℎ, 𝑒], [ℎ, 𝑒+ 1])−𝑄([ℎ, 𝑒], [ℎ, 𝑒− 1]).

=𝜆𝐻(1− 𝑝2𝐻)ℎ(1− 𝑝𝐸𝑝𝐻)𝑒 − 𝜆𝐻(1− (1− 𝑝2𝐻)ℎ)−

𝜆𝐸(1− (1− 𝑝𝐸𝑝𝐻)ℎ) + 𝜆𝐸(1− 𝑝𝐸𝑝𝐻)ℎ(1− 𝑝2𝐸)𝑒−

𝜆𝐻(1− 𝑝2𝐻)ℎ(1− (1− 𝑝𝐸𝑝𝐻)𝑒)− 𝜆𝐸(1− 𝑝𝐸𝑝𝐻)ℎ(1− (1− 𝑝2𝐸)𝑒))

=2𝜆𝐻(1− 𝑝2𝐻)ℎ(1− 𝑝𝐸𝑝𝐻)𝑒 − 𝜆𝐻 + 2𝜆𝐸(1− 𝑝𝐸𝑝𝐻)ℎ(1− 𝑝2𝐸)𝑒 − 𝜆𝐸.
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Take 𝑀(𝑝𝐻) such that (1 − 𝑝2𝐻)
𝑀(𝑝𝐻) = 1

3
, and let 𝐶 = {[𝑥, 𝑦] s.t. 𝑥+ 𝑦 ≤ 2𝑀(𝑝𝐻)},

note that 𝐶 is finite. For any [ℎ, 𝑒] ̸∈ 𝐶, either ℎ ≥𝑀(𝑝𝐻) or 𝑒 ≥𝑀(𝑝𝐻). In both cases, we

have
∑︀

𝑗∈N2 𝑞𝑖,𝑗𝑉 (𝑗) ≤ −𝜆𝐻+𝜆𝐸

3
.

Claim 17. The CTMC [𝐻ℬ𝐸
𝑡 , 𝐸ℬ𝐸

𝑡 ] defined in (5.5a), (5.5b), (5.5c), (5.5d) is irreducible and

positive recurrent.

The proof follows similar ideas as Claim 16.

B.7.2 Positive recurrence of 𝒞(𝑑) and 𝒞(𝑑)

Claim 18. Under 𝒞(𝑑), the number of 𝐻 and 𝐸 agents [𝐻
𝒞(𝑑)
𝑡 , 𝐸

𝒞(𝑑)
𝑡 ] is a positive recurrent

CTMC.

Proof. Similarly to the proof of Claim 16, let 𝐶 = {[𝑥, 𝑦] s.t. 𝑥+ 𝑦 ≤ 2𝑀} for an appropri-

ately chosen 𝑀 and 𝑉 ([ℎ, 𝑒]) = ℎ + 𝑒. Consider a state [ℎ, 𝑒] ̸∈ 𝐶, and assume first that

ℎ ≥𝑀 . Denoting Λ = 𝜆𝐻(1− 𝑝𝐻)𝑑 + 𝜆𝐸(1− 𝑝𝐸)𝑑, we have:

∑︁
𝑗∈N2

𝑞𝑖,𝑗𝑉 (𝑗) = Λ− (𝜆𝐻 + 𝜆𝐸 − Λ)
∑︁

[𝑘𝐻 ,𝑘𝐸 ]≤[ℎ,𝑒]

(𝑘𝐻 + 𝑘𝐸)P[𝑘𝐻(𝑘𝐸) H (E) agents get matched]

≤ Λ− (𝜆𝐻 + 𝜆𝐸 − Λ)
∑︁

[𝑘𝐻 ]≤[ℎ,𝑒]

𝑘𝐻P[𝑘𝐻 H agents get matched]

≤ Λ− (𝜆𝐻 + 𝜆𝐸 − Λ)
∑︁
𝑘≤ℎ

ℎ−𝑘∏︁
𝑖=ℎ

(1− (1− 𝑝𝐻)𝑖)

≤ Λ− (𝜆𝐻 + 𝜆𝐸 − Λ)
∑︁

𝑘≤𝑀/2

(1− (1− 𝑝𝐻)𝑀/2)𝑘

Going from the second to the third inequality bounds the number of agents matched with

the number of agents matched in the first sub-chain-segment (before matching an 𝐸 agent).

Because the function 𝑀 →
∑︀

𝑘≤𝑀/2(1 − (1 − 𝑝𝐻)𝑀/2)𝑘 tends to infinity as 𝑀 grows large,

we can find 𝑀 such that
∑︀

𝑗∈N2 𝑞𝑖,𝑗𝑉 (𝑗) ≤ −1, which concludes the proof.

The case where ℎ < 𝑀 and 𝑒 ≥ 𝑀 can be treated similarly using the following obser-

vation: every-time the chain cannot match to any 𝐻 agent, it tries to match an 𝐸, and it
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succeeds with probability 1−(1−𝑝𝐸)𝑒 irrespective of ℎ. Put together, these events constitute

a set of 𝐸 agents that are matched sequentially, and the total length of the chain is more

than the number of 𝐸 agents selected in that way.

Claim 19. 𝐻𝒞(𝑑)
𝑡 is a positive recurrent CTMC.

The proof follows similar arguments as that of Claim 18.

B.8 Lower bound

Definition 9. We call a matching policy anonymous Markovian if matching decisions are

made at arrival epochs, and only depend on the current compatibility graph 𝒢𝑡 = (𝒱𝑡, ℰ𝑡), and

are anonymous among agents of the same type. In that case, the market 𝒢𝑡 is a continuous-

time Markov chain.

We say that an anonymous Markovian policy 𝒫 is stable if the resulting Markov chain

is ergodic and has a stationary distribution.

In line with our previous notation, we denote 𝑤𝒫
𝐻 (𝑤𝒫

𝐸) the expected stationary waiting

times for 𝐻 and 𝐸 agents under policy 𝒫.

Remark 5. Observe that all the matching policies described in this paper are anonymous

Markovian.

Proposition 21. For any 𝑝𝐸 ∈ [0, 1], 𝜆𝐻 > 0, 𝜆𝐸 ≥ 0, there exists a constant 𝑐 such that

for any 𝑝𝐻 > 0, under any stable anonymous Markovian matching policy 𝒫, 𝑤𝒫
𝐻 +𝑤𝒫

𝐸 ≥ 𝑐
𝑝𝐻

.

The proof follows ideas used in [8]. The main intuition is the following: Suppose the

market size is too small, then an arriving agent has to wait a long time to obtain at least

one incoming edge. This long waiting time contradicts the small market size (with Little’s

law).

Proof. In this proof, we fix a Markovian policy 𝒫 , and we will omit the superscript notations.

Observe that under 𝒫 , the market 𝒢𝑡 only evolves at arrival epochs, and we can analyze the
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embedded discrete-time Markov chain resulting from observing the system at arrival epochs

which we denote by 𝒢𝑖. Let 𝑛 = E[|𝒱|] = E[𝐻] + E[𝐸] be the expected size of the market in

steady-state. Let us denote 𝜃 = 𝜆𝐻

𝜆𝐻+𝜆𝐸
, and let �̂�𝐻 be the expected number of (discrete) time

steps that an 𝐻 agent arriving in steady-state has to wait before getting matched. Little’s

law for discrete Markov chains implies that �̂�𝐻 = E[𝐻]/𝜃.

Note that it is enough to prove that there exists a constant 𝑘 such that 𝑛 ≥ 𝑘/𝑝𝐻 (we then

choose 𝑐 = 𝑘
max(𝜆𝐻 ,𝜆𝐸)

). Let 𝑘 be a constant to be defined later. Assume for contradiction

that there exists 𝑝𝐻 such that 𝑛 < 𝑘/𝑝𝐻 . Let 𝑎 be an 𝐻 agent entering the market in

steady-state. Let 𝒱𝑎 be the set of agents in the market when agent 𝑎 arrives. Note that we

assumed E[|𝒱𝑎|] = 𝑛 < 𝑘/𝑝𝐻 . Define the event 𝐸1 = {|𝒱𝑎| ≤ 3𝑛/𝜃}. By Markov’s inequality,

P[𝐸1] ≥ 1− E[|𝒱𝑎|]𝜃
3𝑛
≥ 1− 𝜃/3.

Let 𝒜𝑎 be the first 3𝑛/𝜃 arrivals after 𝑎, and let 𝐸2 be the event that at least one agent

from 𝒱𝑎 ∪ 𝒜𝑎 has an outgoing edge towards 𝑎. We have

P[𝐸2] = P[Bin(|𝒱𝑎|+ |𝒜𝑎|, 𝑝𝐻) ≥ 1].3

Therefore we get:

P[𝐸2|𝐸1] ≤ P[Bin(6𝑛/𝜃, 𝑝𝐻) ≥ 1] ≤ P[Bin(6𝑘/𝜃𝑝𝐻 , 𝑝𝐻) ≥ 1] ≤ 6𝑘/𝜃.

Where the first inequality derives from the definition of 𝐸1, the second uses the fact that

𝑛 ≤ 𝑘/𝑝𝐻 and the third is Markov’s inequality.

We now use the fact that if 𝑎 does not have any edge from either 𝒱𝑎 or 𝒜𝑎, then she must

wait longer than 3𝑛/𝜃 time steps.

�̂�𝐻 ≥
3𝑛

𝜃
P[𝐸𝑐

2] ≥
3𝑛

𝜃
P[𝐸𝑐

2|𝐸1]P[𝐸1] ≥
3𝑛

𝜃
(1− 6𝑘/𝜃)(1− 𝜃/3) ≥ 3𝑛

𝜃
(1− 6𝑘/𝜃)(2/3).

3Note that we abuse the notation of Bin(u,p) by allowing its parameters to be random variables. In
this case, conditional on the event |𝒱𝑎| + |𝒜𝑎| = 𝑢, the random variable Bin(|𝒱𝑎| + |𝒜𝑎|, 𝑝) has a binomial
distribution with parameters 𝑢 and 𝑝.
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Thus we get:

𝑛 ≥ E[𝐻] = �̂�𝐻𝜃 ≥ 2𝑛(1− 6𝑘

𝜃
).

Therefore for 𝑘 = 𝜃
24

, we obtain a contradiction.

Observe that similar to [8], the above reasoning could be generalized to the case of

periodic Markovian policies (see Definition 2 of [8]) which includes batching polices with

constant batch size.

B.9 A lower bound on 𝑤
𝒞(𝑑)
𝐻

Here, we apply Proposition 21 to the ChainMatch(d) policy (which is a stable anonymous

Markovian matching policy) to prove a lower bound on 𝑤𝒞(𝑑)
𝐻 :

𝑤
𝒞(𝑑)
𝐻 + 𝑤

𝒞(𝑑)
𝐸 ≥ 𝑐

𝑝𝐻
. (B.9)

In the following lemma, we show that 𝑤𝒞(𝑑)
𝐸 < 𝑘𝐸, where 𝑘𝐸 is a constant independent of 𝑝𝐻 ;

therefore (B.9) implies that 𝑤𝒞(𝑑)
𝐻 ≥ 𝑐

𝑝𝐻
− 𝑘𝐸, i.e., there exists a lower-bound on 𝑤

𝒞(𝑑)
𝐻 that

scales with 1/𝑝𝐻 .

Lemma 16. Under ChainMatch(d) and for 0 < 𝑝𝐸 ≤ 1, we have that 𝑤𝒞(𝑑)
𝐸 < 𝑘𝐸, where 𝑘𝐸

is a constant independent of 𝑝𝐻 .

Proof. Let [𝐻𝒞(𝑑), 𝐸𝒞(𝑑)] denote is the random number of 𝐻 and 𝐸 agents in steady-state.

First observe that conditional on 𝐸𝒞(𝑑) = 𝑥, the expected number of 𝐸 agents matched in a

chain-segment is given by:

𝑓(𝑥) :=
𝑥∑︁

𝑘=0

𝑘∏︁
𝑖=0

(1− (1− 𝑝𝐸)𝑥−𝑖).

Note that the above holds because under ChainMatch(d), we give priority to 𝐻 agents;
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therefore, when computing the probability 𝐸 agents in a chain-segment, we can ignore the

𝐻 agents that are matched between two consecutive 𝐸 agents.

Function 𝑓(𝑥) can be re-written recursively as 𝑓(𝑥) = (1− (1− 𝑝𝐸)𝑥)(1 + 𝑓(𝑥− 1)). We

now wish to provide a lower bound of 𝑓(𝑥). Let 𝛼 be a constant to be determined later, and

let us assume by induction that 𝑓(𝑥− 1) ≥ 𝛼(𝑥− 1). Then:

𝑓(𝑥) ≥ (1− (1− 𝑝𝐸)𝑥)(1 + 𝛼(𝑥− 1)) = 𝛼(𝑥− 1) + 1− (1− 𝑝𝐸)𝑥(1 + 𝛼(𝑥− 1)).

Let 𝜉𝛼(𝑦) = (1− 𝑝𝐸)𝑦(1 + 𝛼(𝑦 − 1)). Its derivative satisfies

𝜉′𝛼(𝑦) = (1− 𝑝𝐸)𝑦 (ln(1− 𝑝𝐸)(1 + 𝛼(𝑦 − 1)) + 𝛼) .

Note that in 𝜉𝛼(𝑦), 𝑦 is a continuous variable. Let 𝛼 = ln ( 1
1−𝑝𝐸

), for all 𝑦 ≥ 1, 𝜉′𝛼(𝑦) ≤ 0.

Further, 𝜉𝛼(1) ≤ 𝜉𝛼(0). Thus we have 𝜉𝛼(𝑥) ≤ 𝜉𝛼(0), for 𝑥 ∈ N. Therefore we can complete

our induction.

𝑓(𝑥) ≥ 𝛼(𝑥− 1) + 1− 𝜉𝛼(𝑥) ≥ ln (
1

1− 𝑝𝐸
)𝑥.

We can now conclude our proof using conservation of 𝐸 agents in the market:

𝜆𝐸(1−𝑝𝐸)𝑑 = (𝜆𝐸(1−(1−𝑝𝐸)𝑑))+𝜆𝐻(1−(1−𝑝𝐻)𝑑))E[𝑓(𝐸𝒞(𝑑))] ≥ 𝜆𝐸(1−(1−𝑝𝐸)𝑑) ln (
1

1− 𝑝𝐸
)E[𝐸𝒞(𝑑)]

where in the last inequality we use 𝑓(𝑥) ≥ ln ( 1
1−𝑝𝐸

)𝑥 and (1 − (1 − 𝑝𝐻)
𝑑) ≥ 0. We take

𝑘𝐸 = (1−𝑝𝐸)𝑑

(1−(1−𝑝𝐸)𝑑) ln ( 1
1−𝑝𝐸

)
, which does not depend on 𝑝𝐻 .

B.10 Scaling of 𝑤ℬ𝐻𝐻 and 𝑤
ℬ𝐸
𝐻 when 𝜆𝐻 = 𝜆𝐸

In Figure B-3, we present our numerical study on how 𝑤ℬ𝐻
𝐻 and 𝑤ℬ𝐸

𝐻 scale with 𝑝𝐻 in the case

that 𝜆𝐻 = 𝜆𝐸; the figure plots 𝑝𝐻𝑤ℬ𝐻
𝐻 and 𝑝𝐻𝑤ℬ𝐸

𝐻 when 𝑝𝐻 ranges form 10−3.5 to 10−7 while

𝑝𝐸 = 0.5. As the plot shows, for 𝑝𝐻 smaller than 10−5, the normalized waiting time 𝑝𝐻𝑤ℬ𝐻
𝐻

and 𝑝𝐻𝑤ℬ𝐸
𝐻 both remain constant, which implies the asymptotic scaling is 1/𝑝𝐻 under both
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policies.
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Figure B-3: Normalized waiting time 𝑤𝐻𝑝𝐻 as a function of 𝑝𝐻 (x axis is in log scale), for
both ℬ𝐻 , and ℬ𝐸. 𝑇 = 1012, 𝜆𝐻 = 𝜆𝐸 = 1, 𝑝𝐸 = 0.5.
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Appendix C

Appendix of Chapter 6

C.1 Proof of Claim 3

Proof of Claim 3. The proof of termination in [26] relies on the introduction of a minimum

bid 𝜖 in step 6 of the auction algorithm to ensure that the algorithm does not get stuck

in a cycle of bids of 0. In the limit where 𝜖 → 0, the algorithm ressembles the hungarian

algorithm [74]. The idea is to search for an augmenting path along the edges for which the

dual constraint is tight. If such a path is found, the matching is augmented, otherwise we

perform simultaneous bid increases in way that ensures that prices 𝑝 and margins 𝑞 are still

dual feasible.

We assume that we are given at time 𝑡 an optimal matching 𝑚 and optimal duals (𝑝, 𝑞)

corresponding to the graph with vertices 𝑆𝑡, 𝐵𝑡. We assume that we added a new vertex 𝑏*

to 𝐵′
𝑡 = 𝐵𝑡 ∪ {𝑏*}, and that we initialized 𝑞𝑏* = max𝑠∈𝑆𝑡 𝑣𝑠,𝑏* − 𝑝𝑠

Initialize 𝑚′ = 𝑚, 𝑝′ = 𝑝, 𝑞′ = 𝑞. Note that primal and dual feasibility are satisfied.

Therefore, (𝑚′, 𝑝′, 𝑞′) is optimal iff the following three complementary slackness condition

are satisfied:

∀𝑠 ∈ 𝑆𝑡, 𝑣𝑠,𝑚(𝑠) = 𝑝′𝑠 + 𝑞′𝑚(𝑠). (CS1)

∀𝑠 ∈ 𝑆 ′
𝑡,𝑚(𝑠) = ∅ =⇒ 𝑝𝑠 = 0. (CS2)
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∀𝑏 ∈ 𝐵′
𝑡,𝑚(𝑏) = ∅ =⇒ 𝑞𝑏 = 0. (CS3)

Note that (CS1) and (CS2) are already satisfied. If 𝑞′𝑏* = 0 then (CS3) is also satisfied and

we have an optimal solution.

Suppose now that 𝑞′𝑏* > 0. We will update (𝑚′, 𝑝′, 𝑞′) in a way that maintains primal and

dual feasibility, as well as (CS1) and (CS2).

Our objective is to find an augmenting path in the graph. First we will start by trying to

find an alternating path that starts on 𝑏 and only uses edges for which the dual constraint

is tight: ℰ = {(𝑠, 𝑏)|𝑠 ∈ 𝑆 ′
𝑡, 𝑏 ∈ 𝐵′

𝑡, 𝑣𝑠,𝑏 = 𝑝′𝑠 + 𝑞′𝑏}. Observe that by (CS1) all the matched

edges in 𝑚 are in ℰ . We will now successively color vertices as follows:

0. Start by coloring 𝑏* in blue.

1. For any blue buyer 𝑏, for any seller 𝑠 such that (𝑠, 𝑏) ∈ ℰ and 𝑠 ̸= 𝑚(𝑏), we color 𝑠 in

red.

2. For any red seller 𝑠, let 𝑏 = 𝑚(𝑠), then color 𝑏 in blue.

Observe that there is an alternating path between 𝑏* and any red seller. If at one point

we color an unmatched seller 𝑠* in red, this means that we have found an augmenting path

from 𝑏* to 𝑠* that only utilizes edges in ℰ . In that case, we change 𝑚′ according to the

augmenting path. Because of the way we chose edges in ℰ , (CS1) is still satisfied. (CS2) and

(CS3) are now also satisfied, which means we have an optimal solution (𝑚′, 𝑝′, 𝑞′).

We terminate when we are unable to color vertices any further. In that case, let us define

𝛿1 = min𝑏 blue 𝑞𝑏. If 𝛿1 = 0, then there exists 𝑏 ∈ 𝐵′
𝑡 with 𝑞𝑏 = 0 and an alternating path

form 𝑏* to 𝑏. We update 𝑚′ according to that path, and verify that all CS conditions are

now satisfied.

Suppose that 𝛿1 > 0. Define

𝛿2 = min
𝑏 blue, 𝑠 not red

{𝑝𝑠 + 𝑞𝑏 − 𝑣𝑠,𝑏}. (C.1)

The fact that we cannot color any more vertices implies that 𝛿2 > 0. Let 𝛿 = min(𝛿1, 𝛿2) >
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0. For every red seller 𝑠, we update 𝑝′𝑠 ← 𝑝′𝑠+𝛿. For every blue buyer 𝑏, we update 𝑞′𝑏 ← 𝑞′𝑏−𝛿.

Observe that dual feasibility is still verified, as well as (CS1).

If 𝛿 = 𝛿2, taking (𝑠, 𝑏) the argmin in (C.1), we now have such that 𝑝′𝑠+𝑞′𝑏−𝑣𝑠,𝑏 = 0 which

means we can add (𝑠, 𝑏) to ℰ and color 𝑠 in red. We will eventually have 𝛿 = 𝛿1, and this

leads to 𝑞𝑏 = 0 and we can terminate. This proves both the termination and correctness.

Furthermore, monotonicity of the dual variables is also straightforward. Let us now prove

the conservation property:

∑︁
𝑠∈𝑆𝑡

𝑝𝑠 +
∑︁
𝑏∈𝐵𝑡

𝑞𝑏 =
∑︁
𝑠∈𝑆𝑡

𝑝′𝑠 +
∑︁
𝑏∈𝐵

𝑞′𝑏. (C.2)

Note that when we update the dual variables, then every seller we colored in red was matched

in 𝑆 ′ and we colored that match in blue. Therefore, apart from the initial vertex 𝑖, there are

the same number of red and blue vertices.

C.2 Proof of Claim 4

Proof of Claim 4. The idea of the proof is to iteratively apply the result of Claim 3 after any

new arrival. Let ̃︀𝑆𝑡 (resp. ̃︀𝐵𝑡) be the set of sellers (buyers) who have departed, or already

been matched before time 𝑡. We show by induction over 𝑡 ≤ 𝑇 that:

∑︁
𝑠∈̃︀𝑆𝑡

𝑝𝑓𝑠 +
∑︁
𝑏∈ ̃︀𝐵𝑡

𝑞𝑓𝑏 +
∑︁
𝑠∈𝑆𝑡

𝑝𝑠(𝑡) +
∑︁
𝑏∈𝐵𝑡

𝑞𝑏(𝑡) =
∑︁
𝑏∈ ̃︀𝐵𝑡

𝑞𝑖𝑏 +
∑︁
𝑏∈𝐵𝑡

𝑞𝑖𝑏. (C.3)

This is obvious for 𝑡 = 1. Suppose that it is true for 𝑡 ∈ [1, 𝑇 − 1]. Note that departures

do not affect (C.3). If the agent arrivint at 𝑡 + 1 is a seller, then for all other sellers 𝑠,

𝑝𝑠(𝑡 + 1) = 𝑝𝑠(𝑡) and for all buyers 𝑏, 𝑞𝑏(𝑡 + 1) = 𝑞𝑏(𝑡), thus (C.3), is clearly still satisfied.

Suppose that vertex 𝑡+ 1 is a buyer. Using equation (6.1), we have:

∑︁
𝑠∈𝑆𝑡+1

𝑝𝑠(𝑡+ 1) +
∑︁

𝑏∈𝐵𝑡+1

𝑞𝑏(𝑡+ 1) = 𝑞𝑡+1(𝑡+ 1) +
∑︁
𝑏∈𝐵𝑡

𝑞𝑏(𝑡) +
∑︁
𝑠∈𝑆𝑡

𝑝𝑠(𝑡) =
∑︁

𝑏∈𝐵𝑡+1

𝑞𝑖𝑏.
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Note that at time 𝑇 + 𝑑, every vertex has departed. Thus, ̃︀𝑆𝑇+𝑑 = 𝑆, ̃︀𝐵𝑇+𝑑 = 𝐵 and

𝑆𝑇+𝑑 = 𝐵𝑇+𝑑 = ∅. This enables us to conclude our induction and the proof for (C.3).
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Appendix D

Appendix for Chapter 7

D.1 Proofs for random arrival order

Proof of Proposition 11. When 𝑛 is not a multiple of 𝑝, let 𝑣 ∈ [1, 𝑝 − 1] be the remainder

of the euclidian division of 𝑛 by 𝑝, and 𝑢 be such that 𝑛 = 𝑝𝑢 + 𝑣. Let {𝜎1, ..., 𝜎𝐾} be a

𝑝-periodic (𝛼, 𝑑)-cover of 𝐶𝑑
𝑛1

with associated weights {𝜆1, ..., 𝜆𝐾}. We will show that it can

be extended into an (𝛼 (𝑢/𝑢−2) , 𝑑)-cover of 𝐶𝑑
𝑛.

We set ̃︀𝜎𝑘 to be the 𝑝-periodic permutation over 1, ..., 𝑝𝑢 such that for all 𝑖 ∈ [1, 𝑝],̃︀𝜎𝑘(𝑖) = 𝜎𝑘(𝑖). Let 𝑥 be an integer in the interval [1, 𝑢 + 1]. Define the permutation 𝜎′
𝑘,𝑥 as

follows:

𝜎′
𝑘,𝑥(𝑖) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
̃︀𝜎𝑘(𝑖) 𝑖 ≤ 𝑝𝑥

𝑖+ (𝑢− 𝑥)𝑝 𝑖 ∈ [𝑝𝑥+ 1, 𝑝𝑥+ 1 + 𝑣]

̃︀𝜎𝑘(𝑖− 𝑣) 𝑖 > 𝑝𝑥+ 1 + 𝑣.

(D.1)

Take 𝑖′, 𝑗′ ∈ [1, 𝑝𝑥] ∪ [𝑝𝑥 + 1 + 𝑣, 𝑛] such that |𝑖′ − 𝑗′| ≤ 𝑑. Because 𝑛1 > 𝑝 is a multiple

of 𝑝, there exist 𝑖, 𝑗 ∈ [1, 𝑛1] such that 𝑖 ≡ 𝑖′ mod 𝑝, 𝑗 ≡ 𝑗′ mod 𝑝 and |𝑖 − 𝑗| ≤ 𝑑. By

𝑝-periodicity of 𝜎𝑘 and 𝜎′
𝑘, we know that edge (𝑖′, 𝑗′) is in 𝐵𝑑

𝑛(𝜎
′
𝑘) iff (𝑖, 𝑗) is in 𝐵𝑑

𝑛1
(𝜎𝑘). Thus

we can conclude that
∑︀

𝑘 𝜆𝑘𝐵
𝑑
𝑛(𝜎

′
𝑘,𝑥) covers edge (𝑖′, 𝑗′) of 𝐶𝑑

𝑛.

Every edge is therefore covered for at least 𝑢 − 2 different values of 𝑥. Therefore,∑︀
𝑘

∑︀
𝑥

𝑢
𝑢−2

𝜆𝑘𝐵
𝑑
𝑛(𝜎

′
𝑘,𝑥) covers 𝐶𝑑

𝑛. This means that (𝜎𝑘,𝑥)𝑘,𝑥 is an (𝛼 (𝑢/𝑢−2) , 𝑑)-cover of 𝐶𝑑
𝑛.
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Proof of Proposition 12 in case (ii). Suppose now that 𝑑+ 1 = 𝑘𝑢+ 𝑣 with 1 ≤ 𝑣 < 𝑘. We

first select vertices in the following way: select a subset Φ ⊂ [1, 𝑑 + 1] of 𝑑 + 1 − 𝑣 vertices

uniformly at random. Take Δ = Φ + 𝑘𝑢[1, 𝑟 − 1] = {𝑎 + 𝑘𝑢𝑏|𝑎 ∈ Φ, 𝑏 ∈ [1, 𝑟 − 1]} and note

that |Δ| = 𝑘𝑢𝑟.

We now contract vertices in Δ. This is the same as in Definition 8: for 𝑡 ∈ [1, 𝑢], 𝑎𝑡 is the

set of 𝑢 smallest vertices of Δ that are not in 𝑎1 ∪ ... ∪ 𝑎𝑡−1. Because 𝑑+ 1− 𝑣 is a multiple

of 𝑢, we have 𝑎𝑖+𝑘 = 𝑎𝑖 + (𝑑+ 1). This implies that the contracted graph is 𝐶(𝑑+1)/𝑢
𝑛/𝑢 .

Similarly to the proof of case (𝑖), we extend a cover for 𝐶(𝑑+1)/𝑢
𝑛/𝑢 to cover every edge (𝑖, 𝑗)

for 𝑖, 𝑗 ∈ Δ. If we sum over all the possible ways to select subset Φ, we note that every edge

(𝑖, 𝑗) ∈ 𝐶𝑑
𝑟(𝑑+1) is covered with probability at least

(︀
𝑑+1−𝑣
𝑑+1

)︀2.
D.2 Random arrival order: numerical values for small 𝑑

Solving (LP𝑑) and (LP’𝑘) can become computationally difficult given the increase in the

number of constraints, which is exponential in 𝑑. In Table D.1, we show numerical values of

solutions 𝛼𝑑 and 𝛼′
𝑑 for 𝑑 between 2 and 13.

𝑑 1 2 3 4 5 6 7 8 9 10 11 12 13
𝛼𝑑 2 2.33 2.5 2.64 2.71 2.75 2.79 2.83 2.99* 3.2* 3.11* 3.23*

𝛼′
𝑑 4 3.45 3.17 3.15 3.12 3.09 3.08 3.07 3.20* 3.15* 3.26* 3.32*

Table D.1: Numerical values for 𝛼𝑑 and 𝛼′
𝑑 for small values of 𝑑. Starred elements were

solved approximately (are therefore upper bounds on the actual value).

We now need to provide upper bounds for all 𝑑 between 14 and 51. Note first that if

𝑑+ 1 is a multiple of 𝑘, then Proposition 12 implies that 𝛼𝑑 ≤ 𝛼′
𝑘. Therefore, we need only

consider prime values for 𝑑. In table D.2, we compute upper bounds for 𝛼𝑑 using Proposition

12. For each case, we report which value of 𝑘 we used, as well as the value 𝛼′
𝑘 ((𝑑+1−𝑣)/(𝑑+1))2.

This allows us to conclude that Batching is 0.279-competitive.
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𝑑 17 19 23 29 31 37 41 43 47
𝛼𝑑 ≤ 3.58 3.48 3.44 3.31 3.36 3.30 3.31 3.24 3.35
𝑘 used 4 6 11 7 5 6 5 7 9

Table D.2: Upper bounds for 𝛼𝑑 for prime values of 𝑑; derived from Proposition 12 using the
following formula: 𝛼𝑑 ≤ 𝛼𝑘

(︀
𝑑+1−𝑣
𝑑+1

)︀2 for 𝑘 ≤ 𝑑 and 𝑣 = 𝑑 mod 𝑘 .
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Appendix E

Appendix for Chapter 8

E.1 Upper bounds.

E.1.1 Upper bound for edge-weighted graphs.

Conjecture 4. No algorithm is more than 2/3-competitive on edge-weighted graphs.

Proof. Consider the following type graph 𝑇 with three vertices {1, 2, 3} and two edges with

weights {𝑤1,2 = 1/𝜖, 𝑤1,3 = 1}. Assume arrival rates are respectively 1/2, 𝜖 and 1 and

departures of 1/2, 1 and 0 for vertices 1, 2 and 3 (see Figure E-1).

1

2

3

𝑤1,2 = 1/𝜖

𝑤1,3 = 1

𝑝1 = 1/2

𝛿1 = 1/2

𝑝2 = 𝜖

𝛿2 = 1

𝑝3 = 1

𝛿3 = 0

Figure E-1: Graph 𝑇 with three vertices {1, 2, 3} and two edges with weights {𝑤1,2 =
1/𝜖, 𝑤1,3 = 1}.

The proof is based on two claims.

Claim 20. In the limit 𝜖→ 0, 𝒪 ≥ 1.5 + 𝑜(1).
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Claim 21 (Unproven). In the limit 𝜖→ 0, for any markovian algorithm 𝒜, 𝒜 ≤ 1 + 𝑜(1)

Let us first show that the offline algorithm 𝒪 obtains on average at least 1.5 + 𝑜(1) per

time step (as 𝜖→ 0).

Proof of Claim 20. Let 𝑡 be the time of arrival of a node of type 2. Let 𝑅 be the (random)

time since the previous arrival of a vertex of type 2. Note that P [𝑅 > 𝑘] = (1−𝜖)𝑘. Therefore

P
[︁
𝑅 > 1√

𝜖

]︁
≥ 1−

√
𝜖. Let 𝑋 be the event that there has been an arrival of type 1 between

𝑡−𝑅 and 𝑡 that has not yet departed.

P [𝑋] ≥
𝑅∑︁

𝑘=0

P [ arrival at t+k ]P [ the arrival did not depart by t+R ] =
𝑅∑︁

𝑘=0

1

2

1

2𝑅−𝑘
= 1− 1

2𝑅

Therefore P [𝑋] ≥ (1−
√
𝜖)(1− 1

2
√

1/𝜖
) = 1+ 𝑜(1) The OFF algorithm therefore keeps the

node of type 1 that will stay until 𝑡 (which yields 1 in expectation), and matches the others

to 3 (yielding 1/2− 𝜖). Therefore 𝒪 ≥ 1.5 + 𝑜(1).

Let us now show that any online algorithm 𝒜 ≤ 1 + 𝑜(1).

Proof Sketch of Claim 21. Observe that the state of the system only depends on the number

of vertices of type 1. When a vertex of type 2 arrives, if there is a vertex of type 1 then

it is a dominant strategy to match them. We can reduce the problem to that of finding

the threshold 𝑀 for the number 𝑁1 of vertices of type 1 above which 𝒜 decides to match

an incoming vertex of type 1 to a vertex of type 3. Thus, based on the threshold 𝑀 , any

algorithm is between the greedy algorithm (which always matches 1 to 3) and the patient

algorithm which always makes 1 wait.
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E.2 Special case: star graphs

Consider a star graph with 𝑛 + 1 nodes. We assume w.l.o.g that 𝑤0,1 ≥ 𝑤0,2 ≥ ... ≥ 𝑤0,𝑛−1.

Figure E-2 illustrates the case 𝑛 = 5.

0

1

2

34

5

Figure E-2: Graph 𝐺([0, 5], {(0, 1), (0, 2), (0, 3), (0, 4), (0, 5)}).

The idea is to remove low-weight edges in way that ensures that the probability of the

center node being matched is equal to 1
2
.

Let us start with the case where w.h.p. there is only one agent at the center at any time

(this corresponds to a high departure to arrival ratio, which is precisely the case not handled

in section 8.2.3)

Let 𝑣0 = 𝑝0/2+𝛿0−𝑝0𝛿0/2. 1 Consider 𝑖 such that 𝑝1+𝑝2+...+𝑝𝑖−1 ≤ 𝑣0 ≤ 𝑝1+𝑝2+...+𝑝𝑖.

Let us split node 𝑖 into two new nodes 𝑖′ and 𝑖′′ such that 𝑤0,𝑖′ = 𝑤0,𝑖′′ = 𝑤0,𝑖, 𝛿𝑖′ = 𝛿𝑖′′ = 𝛿𝑖,

and 𝑝𝑖′ = 𝑣0 − (𝑝1 + 𝑝2 + ...+ 𝑝𝑖−1), 𝑝𝑖′′ = 𝑝𝑖 − 𝑝𝑖′ . Note that this does not modify the

performance of the offline algorithm.

We can now define our algorithm:

Proposition 22. 𝒜 yields a competitive ratio of 1−1/𝑒
16

on any star graph.

Proof. Observe that for any node of type 𝑎0 that decides to wait, the probability that it gets

matched at a given time step is the same as the probability of departing/being discarded.

Therefore, the probability that it is eventually matched is 1/2.

1𝑣0 represents the probability that either a node of type 0 arrives and decides to wait, or the current node
of type 0 departs
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Algorithm 8 𝒜
When a node of type 1, ..., 𝑖′ arrives, match it to an node of type 0 if available, otherwise
wait.
When a node of type 𝑖′′, 𝑖+ 1, ..., 𝑛 arrives, make it wait.
When a node of type 0 arrives,

- With probability 1/2, wait and discard any previously arrived 0 nodes.

- With probability 1/2, match to the best available node, if none is available, discard it.

For a given instance, let us consider the set 𝑆1 of nodes of type 0 that were matched

immediately upon arrival by the Offline algorithm. Similarly, let 𝑆2 be the set of nodes of

type 0 that were matched after waiting at least one time step. For 𝑥 ∈ 𝑆1 ∪ 𝑆2, define 𝑚𝑥

the node 𝑥 was matched to, and 𝑣𝑥 = 𝑤0,𝑚𝑥 the value of the match.2 The value obtained by

the offline algorithm is given by 𝑂𝐹𝐹 =
∑︀

𝑥∈𝑆1
𝑣𝑥 +

∑︀
𝑥∈𝑆2

𝑣𝑥.

E.2.1 Case 1: 𝑆1

Consider a node 𝑥 ∈ 𝑆1. With probability 1/2, 𝒜 also decided to match 𝑥 immediately. It is

possible that 𝑚𝑥 has already been matched by 𝒜, but we assume for now that 𝒜 is allowed

to double match 𝑚𝑥. Therefore w.p. 1/2, 𝒜 obtains at least 𝑣𝑥.

E.2.2 Case 2: 𝑆2

Definition 10. We say that two nodes 𝑥 and 𝑥′ of type 0 are adjacent if there are present in

the pool at the same time under the no-match policy. For a node 𝑥, 𝑆(𝑥) is the smallest set

that contains 𝑥 and such that for all 𝑥′ ∈ 𝑆(𝑥), 𝑆(𝑥) contains all the nodes that are adjacent

to 𝑥′.

Lemma 17. For all 𝑥, 𝑆(𝑥) is finite almost surely.

Proof. The Markov chains that counts the number of nodes of type 0 under the no-match

policy hits the value 0 infinitely often.
2notation overload
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Consider now a node 𝑥 ∈ 𝑆2.

With probability 1/2, 𝒜 also makes 𝑥 wait. With probability greater than 1/2, 𝑥 is not

yet matched when 𝑦 arrives. If 𝑘 ≤ 𝑖, we obtain that 𝒜(𝑥) = 𝑤𝑎0,𝑎𝑘

2
= 𝒪ℱℱ(𝑥)

2
.

Observe that the number of matches to 𝑘 > 𝑖 cannot be more than half of all nodes of

type 𝑎0.

E.2.3 No match policy

For each 𝑖 ∈ [1, 𝐼] and a given matching policy, we further define 𝑁 𝑡
𝑖 the number of nodes of

type 𝑖 in the system at time 𝑡.

Let us define 𝒮𝒮 to be the policy that never matches any node. Under 𝒮𝒮, each of the

𝑁𝑖(𝒮𝒮) = (𝑁 𝑡
𝑖 )𝑡≥0 is an independent positive recurrent Markov chain. Let 𝜋𝑖(𝒮𝒮) = (𝜋𝑘

𝑖 )𝑘≥0

be the steady-state distribution of 𝑁𝑖.

Claim 22. 𝜋0
𝑖 (𝒮𝒮) ≤ 𝛿𝑖

𝑝𝑖+𝛿𝑖
.

Proof. Note that P[𝑁𝑖(𝑡+ 1) = 0|𝑁 𝑡
𝑖 = 𝑘] = 𝛿𝑘𝑖 . Therefore flow conservation yields:

𝜋0
𝑖 𝑝𝑖 =

∑︁
𝑘≥1

𝜋𝑘
𝑖 𝛿

𝑘
𝑖 ≤

∑︁
𝑘≥1

𝜋𝑘
𝑖 𝛿𝑖 = (1− 𝜋0

𝑖 )𝛿𝑖.

Claim 23. If 𝛿𝑖 ≥ 𝑝𝑖 then 𝜋0
𝑖 (𝒮𝒮) ≥

𝛿𝑖−𝑝𝑖
𝛿𝑖

.

Proof. Note that P[𝑁𝑖(𝑡+1) ≥ 𝑘+1|𝑁 𝑡
𝑖 ≤ 𝑘] ≤ 𝑝𝑖, and that P[𝑁𝑖(𝑡+1) ≤ 𝑘|𝑁 𝑡

𝑖 = 𝑘+1] ≥ 𝛿𝑖.

Therefore flow conservation yields 𝜋𝑘
𝑖 𝑝𝑖 ≥ 𝜋𝑘+1

𝑖 𝛿𝑖, i.e. 𝜋𝑘+1
𝑖 ≤ 𝑝𝑖

𝛿𝑖
𝜋𝑘
𝑖 .

Thus, we have,

1 =
∑︁
𝑘≥0

𝜋𝑘
𝑖 = 𝜋0

𝑖 +
∑︁
𝑘≥1

𝜋𝑘
𝑖 ≤ 𝜋0

𝑖 +
∑︁
𝑘≥1

𝑝𝑖
𝛿𝑖
𝜋𝑘−1
𝑖 = 𝜋0

𝑖 +
𝑝𝑖
𝛿𝑖
.
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